Detailseite
Projekt Druckansicht

Die molekularen Funktionen von Nephrocytin-4

Antragsteller Professor Dr. Gerd Walz
Fachliche Zuordnung Nephrologie
Förderung Förderung von 2012 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 231514479
 
Erstellungsjahr 2017

Zusammenfassung der Projektergebnisse

Nephronophthisis (NPH) is an autosomal recessive disease caused by more than 20 different gene mutations that is often associated with end-stage renal disease in children. Almost all NPH gene products (NPHPs) localize to the cilium, a microtubular structure with specialized signaling properties and important developmental functions. NPHPs seem to be particularly important to establish the transition zone, a compartment adjacent to the basal body that appears to function as a gate-keeper, regulating the access of proteins and lipids to the ciliary axoneme. Significant progress has been made to define a hierarchy of NPHPs that control the establishment and maintenance of the transition zone, using C. elegans as a model system. We exploited the multi-ciliated cells of the Xenopus epidermis to obtain insight into the molecular function of NPHPs. We observed that NPHP4, one of the key components of the NPHP protein networks, recruits the actin modifying protein Daam1 through interaction with Inturned. This interaction has important implications for the normal assembly of the subapical actin layer, a part of the apical actin cytoskeleton that seems to be particularly important for basal body docking and subsequent ciliogenesis. Ongoing studies and unpublished data extend this initial observation to the NPHP1-NPHP4 module, demonstrating that NPHP1 interacts with the actin nucleator Spire1, an interaction that is disrupted by NPHP4 and NPHP9. Since depletion of spire1 resembles the defects caused by nphp4 knockdown, future works needs to elucidate the dynamics between NPHP1, NPHP4, NPHP9 and Spire1.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung