Project Details
Projekt Print View

SFB 837:  Interaction Modelling in Mechanised Tunnelling

Subject Area Construction Engineering and Architecture
Geosciences
Materials Science and Engineering
Mathematics
Term from 2010 to 2022
Website Homepage
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 77309832
 
Mechanized tunneling is a highly automated construction process that has proven itself to be suitable for use in a wide range of different geological and hydrological conditions. Its application ranges from urban tunnels driven below sensitive structures with low ground cover to deep alpine tunnels characterized by large ground pressures and high overburdens. However, problems inherent in the mechanized tunneling process, such as its lack of adaptability to unexpected changes in geological conditions, uncertainties in a priori soil information and the complexity of machine-soil interactions present significant challenges in both the planning and construction of tunnels. As a result, tunnel boring machines only reach approx. 30% of their theoretical production capacity during typical tunnel drives. In response to the continuously expanding application range of mechanized tunneling to different geological conditions, the trend towards larger machine diameters, increasing safety requirements and the need to minimize tunneling-related risks, the project, an interdisciplinary team of scientists from civil- and mechanical engineering, computational mechanics and the geosciences, aims to explore and describe the dominant factors and essential processes and interactions that influence safety and efficiency in mechanized tunneling. During its first two research periods, the methods developed by the project based on the synthesis of computer-oriented modeling, experimental investiga-tions and digital planning, have proven extraordinarily successful in answering these questions. Circumstances that could previously only be described in simplified empirical manners can now be explained using well founded physics-based models, which open new perspectives for the better management and optimization of current design, construction and logistics processes.While research during the first two funding phases was focused on the tunneling in soft ground, the proposed research in the third funding period will additionally concentrate on tunneling in difficult geological conditions that today set the limits on the application range of mechanized tunneling. Among other topics, research will be concerned with understanding the as yet unexplored factors that control tunneling processes in expansive soils as well as with the design of novel deformation-tolerant tunnel linings to be used in such situations. From interdisciplinary research between material scientists and geophysicists, essential insights will be gained into the wear of excavation tools and the efficiency of excavation in such difficult geological conditions. Simulation and risk models for the excavation, advancement and logistics processes developed in the SFB 837 will enable improved, environmentally-friendly and low-risk planning and construction processes. These models will be ex-tended to enable real-time prognosis and to provide a platform for the interactive digital design of urban tunneling proj
DFG Programme Collaborative Research Centres

Current projects

Completed projects

Applicant Institution Ruhr-Universität Bochum
 
 

Additional Information

Textvergrößerung und Kontrastanpassung