Detailseite
SP1: Treibhausgasflüsse und Kohlenstoffspeicherung
Antragsteller
Professor Dr. Andreas Gattinger; Dr. Mathias Hoffmann
Fachliche Zuordnung
Bodenwissenschaften
Ökologie der Landnutzung
Pflanzenbau, Pflanzenernährung, Agrartechnik
Ökologie der Landnutzung
Pflanzenbau, Pflanzenernährung, Agrartechnik
Förderung
Förderung seit 2024
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 517723694
Angesichts der sich verschärfenden globalen Klimakrise besteht dringender Handlungsbedarf die Ursachen des Klimawandels zu bekämpfen und zu mindern. Da die Treibhausgasemissionen (THG-Emissionen) wesentlich zur globalen Erderwärmung beitragen, müssen sich alle Anstrengungen auf deren Vermeidung und Verminderung konzentrieren. Außerdem könnte die zusätzliche Bindung von Kohlenstoff (C) in Böden und Baumbiomasse/Holz ein wirksames Instrument für den Klimaschutz sein. Deutschland ist bestrebt, durch verschiedene Minderungsmaßnahmen bis 2045 Klimaneutralität zu erreichen. Es gibt bereits belastbare Hinweise, dass Agroforstsysteme (AFS) die N2O- und/oder CO2-Emissionen reduzieren und so den Carbonfootprint verringern können. Dies ist vor allem auf die Erhöhung der unter- und oberirdische Biomasse durch Anpflanzung von Gehölzen und Gehölzen und der dazugehörigen Vegetation zurückzuführen ist. Darüber hinaus werden die THG-Emissionen stark von den mikroklimatischen Bedingungen und dem Wasser- und Nährstoffkreislauf beeinflusst. AFS zeichnen sich insbesondere durch ein hohes Maß an kleinräumiger Heterogenität aus. Bislang gibt es jedoch keine systematischen Erkenntnisse über das quantitative THG-Reduktions- und C-Sequestrierungspotenzial von AFS und über deren räumlich-zeitliche Variabilität. Dies ist teilweise auf methodische Beschränkungen zurückzuführen, wenn es um umfassende Analysen des gesamten Systems geht, einschließlich der Kulturpflanzen- und Baumreihen. Daher konzentriert sich dieses Projekt auf umfassende Messungen der räumlich-zeitlichen Muster der THG-Emissionen und der C-Dynamik in AFS, um die zugrundeliegenden Prozesse und Treiber besser zu verstehen und zu ermitteln, wie AFS wirksam zur Verringerung der THG-Emissionen beitragen und möglicherweise die C-Sequestrierung in der gemäßigten Klimazone verbessern können. Die angewandten Messtechniken beinhalten: i) mikrometeorologische Sensornetzwerke, (ii) halbautomatische geschlossene Kammersysteme zur Bestimmung der tageszeitlichen CO2-, CH4-, N2O- und ET-Flüsse (enge Verknüpfung von SP1 und 2), iii) Isotopenansätze und iv) Methoden zur Bestimmung des Netto-Ökosystem-Kohlenstoffbudgets und Bodenkohlenstoff-Stabilisierungsmechanismen. Die gegenseitigen Abhängigkeiten zwischen Parametern, die sich auf THG-Emissionen, Kohlenstoffdynamik und die Integration von Bäumen beziehen, werden untersucht, um Modellparameter für Upscaling und Szenarioanalysen abzuleiten. Um diese Ziele zu erreichen, werden im Projekt folgende Arbeitspakete behandelt: WP1) Einfluss von AFS auf die räumlich-zeitliche Dynamik der THG-Flüsse, WP2) Einfluss von AFS auf das C-Sequestrierungspotenzial und WP3) Interaktion von Kohlenstoff-, Stickstoff- und Wasserkreisläufen in AFS. Die Arbeiten finden an zwei verschiedenen Standorten (in Hessen, Gladbacherhof und in Brandenburg, Großmutz) statt, um die wissenschaftlichen Erkenntnisse unter verschiedenen pedoklimatischen Bedingungen zu bewerten und zu validieren.
DFG-Verfahren
Forschungsgruppen
Teilprojekt zu
FOR 5664:
Agroforstwirtschaft für eine nachhaltige multifunktionale Landwirtschaft (FORMULA)
Mitverantwortliche
Dr. Maren Dubbert; Professor Dr. Jan Siemens