Detailseite
Projekt Druckansicht

Transport of Nitrate and Nitrite across Cell Membranes

Antragstellerinnen / Antragsteller Professorin Dr. Susana Andrade; Professor Dr. Oliver Einsle
Fachliche Zuordnung Stoffwechselphysiologie, Biochemie und Genetik der Mikroorganismen
Förderung Förderung von 2007 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 54268421
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

Enteric bacteria such as Salmonella evade the immune defense of their human hosts by proliferating inside the immune cells – macrophages – themselves, thereby levering out this particular defense mechanism and at the same time hiding from other actors of the immune system. One of the methods to successfully avoid damage through macrophage is to counter their potent cytotoxin peroxynitrite by uptake into the bacterial cell and subsequent reduction to harmless products. To this end, Salmonella was suggested to employ the NirC protein, an integral membrane protein that normally imports the nitrite anion, NO2–, for cytoplasmic reduction to ammonia, a crucial building block of all biomacromolecules. We had already obtained a three-dimensional structure of NirC from Salmonella typhimurium by X-ray crystallography and had characterized the passive transport of nitrite by planar lipid bilayer electrophysiology. In the present project we set out to test the hypothesis of peroxynitrite uptake, to further characterize the NirC protein and some of its evolutionary relatives and to identify novel compounds that can act as specific inhibitors for NirC-mediated anion uptake. Constituting an important defense mechanism against host immunity, the deletion of NirC had previously been shown to decrease the pathogenicity of Salmonella, from which we concluded that specific inhibitors for NirC have a high potential to become a new, potent class of antimicrobial agents.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung