Detailseite
Projekt Druckansicht

Stückweise uniforme Gitter - Theorie und Anwendungen, insbesondere zur Auflösung von Grenzschichten

Fachliche Zuordnung Mathematik
Förderung Förderung von 1998 bis 2002
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 5080918
 
Die genaue Auflösung von Grenzschichten ist für viele praktische Anwendungen, z.B. in der inneren Elektrotechnik und der Strömungstechnik, wichtig. Oft verwenden Ingenieure dabei zur Diskretisierung der zugrunde liegenden Gleichungen intuitiv angepaßte Gitter. Diese Gitter sind im allgemeinen stark anisotrop und verletzen oft die Standardvoraussetzungen der numerischen Analysis für die Herleitung von Fehlerabschätzungen von Diskretisierungsverfahren.Trotz enormer Fortschritte bei der theoretischen Analyse von insbesondere Finite-Element-Verfahren auf grenzschichtangepaßten Gittern in den Jahren 1996 - 1999 beschränken sich die bisher erzielten Ergebnisse vorwiegend auf Verfahren relativ niedriger Ordnung und auf Standard-Modell-Probleme, vorwiegend mit sogenannten exponentiellen Grenzschichten. Weniger erforscht sind die praktisch wichtigen parabolischen Grenzschichten und Effekte, die durch die Überlagerung verschiedener Grenzschichtstrukturen entstehen. Zur Defektkorrektur für Finite-ElementeVerfahren auf anisotropen Gittern als aussichtsreiches Verfahren höherer Ordnung liegen bisher kaum Ergebnisse vor.Im Rahmen dieses Projektes sollen beide genannten Probleme einen Schwerpunkt der Untersuchungen bilden.Ein weiteres Ziel ist die Erzeugung angepaßter Gitter bei komplizierterer Geometrie bzw. Grenzschichtstruktur. Eine mögliche Strategie hierzu könnte die Verwendung sich überlappender Gitter sein. Parallel zur a-priori Erzeugung angepaßter Gitter wird an a-posteriori Strategien auf der Basis von robusten Fehlerschätzern gearbeitet.
DFG-Verfahren Sachbeihilfen
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung