Detailseite
Ökohydrologische Konnektivität zwischen Bäumen und der Kapillarzone - Schlüsselfunktion für die Trockenheitsresilienz Europäischer Wälder?
Antragstellerinnen / Antragsteller
Dr.-Ing. Matthias Beyer; Dr. Maren Dubbert
Fachliche Zuordnung
Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Förderung
Förderung seit 2022
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 501530203
In den vergangen 20 Jahren kam es in Mitteleuropa zu einer Häufung hydrologischer Dürreereignisse, ein Trend, der sich in Zukunft weiter verstärken wird. Bereits jetzt gelten die im Vergleich zu Mittelwerten extrem trockenen vergangenen Jahre als eine der Hauptursachen für den sich systematisch verschlechternden Zustand der Wälder in Mitteleuropa. Eine allgemein akzeptierte Annahme ist, dass tief verwurzelte Bäume solchen Dürreereignissen besser standhalten können. Das prozessbasierte Verständnis in Bezug auf die Nutzung von tief liegenden Wasserressourcen und deren Nutzung durch Vegetation ist jedoch stark limitiert. Tiefes Bodenwasser (> 1 m) wird häufig vernachlässigt oder vereinfacht betrachtet. Zentrales Ziel unseres Projektes ist es daher, raumzeitliche Dynamiken und Rückkopplungen zwischen Niederschlagsinfiltration und Grundwasserneubildung sowie kapillarem Aufstieg zu quantifizieren. Wir werden die Wasseraufnahme von typischen europäischen Waldbäumen (Buche, Eiche, Fichte) mit unterschiedlichen Wassernutzungsstrategien und Wurzeltiefen untersuchen und dabei zwischen Bäumen mit I) direktem Zugang zu Grundwasser, II) Kontakt zur Kapillarzone oberhalb des lokalen Grundwasserspiegels und III) solchen, ohne direkte Verbindung zum Grundwasser/der Kapillarzone haben, aber ein tiefes Wurzelsystem zur Nutzung der in der ungesättigten Zone gespeicherten Wassers besitzen und IV) flachwurzelnden Bäumen. Unsere Hypothese ist, dass die Aufrechterhaltung der Konnektivität zur Kapillarzone für einige Arten eine kritische Komponente der Trockenheitstoleranz ist, deren Bedeutung aber abhängt von I) klimatischen und geomorphologischen Bedingungen, die die raumzeitliche Dynamik dieser Verbindung definieren (Dürredauer, Pufferkapazität der Kapillarzone) und II) Artenspezifischen Dürreanpassungen (Wurzeltiefen, adaptives Wurzelwachstum, Grad der Isohydrie) ab.Um die Auswirkungen der Vegetationskonnektivität zur Kapillarzone auf die Baumgesundheit sowie den Wasserkreislauf vollständig zu verstehen, verwenden wir eine Kombination aus ökohydrologischen, pflanzenphysiologischen, geophysikalischen und modellbasierten Ansätzen. Ein besonderer Schwerpunkt ist der Einsatz einer neuartigen Messmethodik zur kontinuierlichen Erfassung stabiler Wasserisotope. Daraus resultierende Datensätze mit hoher räumlich-zeitlicher Auflösung der Wasser Isotopie des Boden, des Xylem und des atmosphärischen Wasserdampfes werden durch Sauerstoffisotope- und Phloem-Kohlenstoffisotopendaten von Jahrringen ergänzt. Diese Kombination ermöglicht uns Rückschlüssen auf die aktuelle Konnektivität verschiedener Baumarten zu verschiedenen tief liegenden Wasserpools und sowie die neuartige Möglichkeit zur Analyse historischer Dürreereignisse. Anschließend wird das isotopenfähige SVAT-Modell MuSICA mit dem parametrisiert, um den Zusammenhang zwischen Tiefenwasseraufnahme und der Baumgesundheit unter verschiedenen Szenarien (extremer trockener, trockener, normaler Jahre) vorherzusagen.
DFG-Verfahren
Sachbeihilfen
Internationaler Bezug
Frankreich, Italien, Schweden
Großgeräte
Water Isotope Laserspectrometer
Gerätegruppe
1890 Optische Spektrometer (außer 180-186)
Kooperationspartner
Dr. Matthias Cuntz; Professor Dr. John D Marshall; Professor Dr. Daniele Penna