Detailseite
Projekt Druckansicht

Auswirkungen von variabler solarer Aktivität auf die neutrale exosphärische Wasserstoffdichte der Erde auf Zeitskalen von halben Stunden bis zum solaren Zyklus

Antragsteller Dr. Jochen Zönnchen
Fachliche Zuordnung Physik und Chemie der Atmosphäre
Förderung Förderung seit 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 469043535
 
Basierend auf 10 Jahren globaler Lyman-α Beobachtungen von TWINS wird vorgeschlagen, in 3D die Variation der neutralen Exosphäre der Erde verursacht von Variabilität der solaren Aktivität (nur Sonnenwind oder UV und beide gemeinsam) auf Zeitskalen von Jahren (solarer Zyklus) über Tage (27 Tage solare Rotation) bis zu Stunden (geomagnetische Stürme) zu untersuchen.Die Exosphäre ist die äußerste Region der Atmosphäre und besteht vor allem aus neutralem Wasserstoff (H). Als Übergang in den interplanetaren Raum spielt sie eine wichtige Rolle für die gesamte Entwicklung der Erdatmosphäre von der urzeitlichen Vergangenheit bis in die Zukunft, z.B. durch Verlust von H aus Oberflächenwasser in den Weltraum. Da unmittelbar der UV-Strahlung und solaren Aktivität ausgesetzt können Space Weather-Ereignisse (wie geomagnetische Stürme) signifikante Effekte auf die neutrale Exosphäre haben. Über die quantitativen Einflüsse und die relevanten physikalischen Prozesse ist bislang nur wenig bekannt.Exosphärische H-Atome streuen resonant solare Lyman-α Strahlung zurück. Die gestreute Intensität ist proportional zur lokalen H-Dichte im optisch dünnen Bereich oberhalb von 3 Re (Erdradien). Die TWINS Daten enthalten einzigartige kontinuierliche exosphärische Lyman-α Messungen in 3D aus 10 Jahren und sind erst teilweise analysiert.Es wird vorgeschlagen, mittels tomographischer und kinetischer Modelle in 3D die dynamische H-Dichtevariationen verursacht durch variierendes Space Weather auf verschiedenen Zeitskalen bei 3-8 Re zu untersuchen.Erstens soll die Entwicklung der H-Dichteverteilung über den solaren Zyklus 2008-2018 in 3D charakterisiert werden, insbesondere wie totale H-Dichte, radiale Profile und regionale Asymmetrien rund um die Erde (polar/äquatorial, Tag/Nacht usw.) an den solaren Zyklus gekoppelt sind.Zweitens soll die hoch dynamische Reaktion auf geomagnetische Stürme erstmals in 3D mit Zeitauflösung von Stunden bis ~30 min auf Basis der einzigartig großen Menge an Stürmen in den TWINS-Daten analysiert werden. Durch Monte Carlo Simulationen sollen beitragende physikalische Mechanismen bestimmt und quantifiziert werden.Drittens wird vorgeschlagen, den alleinigen Einfluss von solaren UV-Variationen bei relativ konstantem Sonnenwind zu untersuchen anhand der solaren 27 Tage UV-Variation sowie eruptiver solare UV-Ausbrüche. Im Fokus stehen hier die Effekte durch periodische und eruptive Variationen des Strahlungsdrucks bzw. der Photoionisation, insbesondere auf orbitierende H-Atome in größeren Distanzen.Die Verfügbarkeit eines 3D H-Dichtemodells mit Berücksichtigung dynamischer Variationen durch veränderliches Space Weather wäre ein großer Fortschritt im Verständnis der neutralen Exosphäre. Es besitzt auch eine große Bedeutung für kommende Missionen zur Erforschung der Magnetosphäre (wie SMILE, LEXI oder STORM) auf Basis von ENA- bzw. Soft Röntgen-Messungen, die zur Invertierung korrekte lokale exosphärische H-Dichten zu einer beliebigen Zeit benötigen.
DFG-Verfahren Sachbeihilfen
Internationaler Bezug USA
Kooperationspartnerinnen / Kooperationspartner Professorin Dr. Hyunju Kim Connor; Professor Dr. David Gary Sibeck
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung