Detailseite
Projekt Druckansicht

Lattice-Boltzmann-Simulation des Wärmeübergangs in turbulenten Rohrströmungen mit aufgelösten nicht-sphärischen Partikeln

Fachliche Zuordnung Strömungsmechanik
Förderung Förderung seit 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 465872891
 
Turbulente, mit Partikeln beladene Strömungen sind in einer Vielzahl von industriellen und natürlichen Prozessen allgegenwärtig, z.B. bei der Verbrennung von Biomasse, beim Schadstofftransport, bei Sandstürmen, Eiswolken usw. In den meisten dieser Anwendungen ist die Partikelform nicht kugelförmig. Die numerische Simulation von turbulenten Strömungen mit nicht kugelförmigen Partikeln ist kompliziert, da die Orientierung und Verteilung der Partikel eine wichtige Rolle spielt und das Strömungs- und Turbulenzverhalten erheblich verändern kann. Die meisten numerischen Studien, die sich mit turbulenten Strömungen mit nicht-kugelförmigen Partikeln beschäftigen, sind auf Punktpartikel beschränkt. Wenn die Partikel jedoch größer als die Kolmogorov-Längenskala werden, werden die Simulationen komplexer und erfordern einen hohen Rechenaufwand. In der wissenschaftlichen Literatur finden sich bisher nur sehr wenige numerische Studien zu turbulenten Strömungen mit grenzflächenaufgelösten nicht-kugelförmigen Teilchen. Die meisten dieser Studien haben isotherme Bedingungen betrachtet. Der Wärmetransport von/zu den Partikeln kann jedoch wiederum alle Strömungseigenschaften signifikant verändern. Heiße Partikel können auch die Turbulenzspektren durch Druckdilatation verändern. Solche Effekte wurden in der Vergangenheit nie gründlich untersucht. Das Ziel dieser Studie ist es, diese Lücke zu schließen, indem eine direkte numerische Simulation (DNS) von turbulenten Strömungen durchgeführt wird, die nicht-kugelförmige Partikel enthalten und Wärmeübertragungseffekte berücksichtigen. Angesichts der Komplexität des Problems und der sehr hohen Rechenkosten, die für die Simulationen erforderlich sind, wird für diese Studie ein Lattice-Boltzmann-Methode (LBM)-Löser gewählt. Aufgrund der Lokalität aller Operationen sind parallele Berechnungen mit LBM problemlos möglich. Außerdem kann es relativ einfach auf komplexe Gebiete angewendet werden, was es für den Zweck des vorliegenden Vorschlags geeignet macht. Zu diesem Zweck wird ein Immersed Boundary Verfahren (IBM) in Kombination mit einem LBM-Löser eingesetzt. Um Informationen zu liefern, die für praktische Anwendungen relevant sind, wird in den abschließenden Simulationen eine Rohrströmung betrachtet, die ein besseres physikalisches Verständnis wichtiger Phänomene wie z.B. der Partikelposition in katalytischen Reaktoren oder der Verschmutzung in Wärmetauschern ermöglicht. Solche DNS (hier basierend auf LBM) werden unser Verständnis der physikalischen Übertragungsmechanismen verbessern. Die Kombination von Turbulenz-, nicht-isothermen und fluiddynamischen Aspekten und die Berücksichtigung der gegenseitigen Wechselwirkungen, die während der Bewegung von nicht-sphärischen Partikeln auftreten, sind die zentralen Ziele dieses Vorschlags. Die Ergebnisse dieser Studie werden auch praktische Fortschritte bei der Verbesserung des Wärmeübergangs ermöglichen, möglicherweise gekoppelt mit Effekten zur Verringerung des Luftwiderstands.
DFG-Verfahren Sachbeihilfen
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung