Detailseite
Projekt Druckansicht

Beobachtung Pflanzlicher Photosynthese mit satellitengestützten Messungen der Sonnen Induzierten Fluoreszenz (CropSIF)

Antragstellerin Professorin Dr. Doris Dransch, seit 7/2019
Fachliche Zuordnung Geodäsie, Photogrammetrie, Fernerkundung, Geoinformatik, Kartographie
Ökologie der Landnutzung
Förderung Förderung von 2018 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 391680706
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

The objective of the Crop-SIF project was to study crop productivity and yield variability by making use of recent developments related to satellite vegetation observations and data mining in the context of ensuring food security. Crop-SIF activities dealt with both the machine learning and deep learning methods applied to both vegetation and meteorological data, as well as the utilization of - only recently quantified from satellite platforms - sun-induced chlorophyll fluorescence (SIF). This research contributed to the assessment of agricultural productivity and climate impacts by taking advantage using novel methodologies (interpretable deep learning), datasets (SIF) and computing platforms (Google Earth Engine). In addition, within the project, the cooperation between GFZ German Research Centre for Geosciences and the Nanjing University was strengthened, including exchange visits of the scientists from both research institutions.

Projektbezogene Publikationen (Auswahl)

  • (2019) Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using Machine Learning Methods Trained with Radiative Transfer Simulations. Remote Sensing of Environment, 225, 441-457
    Wolanin A., Camps-Valls G., Gommez-Chova L., Mateo-Garcıa G., van der Tol Ch., Zhang Y., Guanter L.
    (Siehe online unter https://doi.org/10.1016/j.rse.2019.03.002)
  • (2020) Estimating and Understanding Crop Yields with Explainable Deep Learning in the Indian Wheat Belt. Environmental Research Letters, 15, 02401
    Wolanin A., Mateo-Garcıa G., Camps-Valls G., Gomez-Chova L. ,Meroni, M., Duveiller, G., You, L., Guanter L.
    (Siehe online unter https://doi.org/10.1088/1748-9326/ab68ac)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung