Project Details
Non-Smooth Variational Models with Second Order and Local Anisotropy Priors for Restoring Cyclic and Manifold-Valued Images
Subject Area
Mathematics
Term
from 2015 to 2019
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 288750882
Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on various imaging tasks. Many useful techniques rely on non-smooth, convex functionals. Combinations of first and second order derivatives in regularization functionals or the incorporation of anisotropies steered by the local structures of the image have led to very powerful image restoration techniques. Splitting algorithms together with primal-dual optimization methods are the state-of-the-art techniques for minimizing these functionals. Their strength consists in the splitting of the original problem into a sequence of proximal mappings which can be computed efficiently.In various applications in image processing and computer vision the functions of interest take values on the circle or in manifolds. Although manifolds play an important role in these fields for a long time, there are only few papers which combine results on non-smooth optimization which were recently extensively exploited in real-valued image processing with manifold-valued settings. This leaves high potential for future research.In our project we want to generalize convex models for the restoration of real-valued images to cyclic and manifold-valued images. We want to focus on symmetric spaces having applications in image processing. For Hadamard spaces the models are still convex which is in general, e.g., for spheres, not the case. A specific feature of our models is that their regularization terms will incorporate first and second order differences or directional anisotropies. The challenges of our project include the appropriate construction of restoration models for manifold-valued signals and images, the analysis of the models, and the development of efficient minimization algorithms, including convergence results. There is a rich potential for applications of the methods which will be developed within our project. Among others we will use our models for the analysis of Electroencephalographical data and of Electron Backscattered Diffraction data. A publicly available software package is planed as well.
DFG Programme
Research Grants