Project Details
SPP 1299: Adaptive Surfaces for High Temperature Applications - The Skin Concept
Subject Area
Materials Science and Engineering
Term
from 2007 to 2016
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 28443546
Metallic and ceramic materials are typically considered as "dead matter". Particularly at elevated and high temperatures (approx. 650-1100 °C), tailored surfaces have the potential to react to effects from the environment in a very specific way and thus may provide special functionalities to a technical component. For example, the following functionalities are the result of an active "answer" of a materials system to its environment at high temperatures:
(1) Formation of a well-defined surface topography produced by local swelling and/or shrinking, which can, among others, influence the gas flow around the surface.
(2) Protection against heat and chemical attack.
(3) Self cleaning or rejection of deposits by microstructural and/or chemical effects.
(4) "Breathing" and "transpiration" by membrane functions (such as lubricant release or pick-up, release of depot phases, selective penetration of chemical elements or compounds).
(5) Capture of physical and chemical parameters (such as pressure, temperature, flow rate, barrier effects, chemical and physical indicator functions).
(6) Regeneration (self healing after surface damage).
All these properties can be achieved by an adequate chemical and/or physical surface pre-treatment followed by high temperature exposure (high temperature activation step). Potential methods are micro- and nanostructure modification of chemistry and geometry of surface and sub-surface areas, e. g., by micro alloying, ion implantation, PVD, CVD, thermal spraying and other deposition methods (masked, 3-D controlled, time-controlled or pulsed, local and global variation of chemical and physical process parameters), which act as precursors for the high temperature activation step. Major objectives of the Priority Programme are:
(1) Elaboration of basic scientific understanding for manufacturing of adapting ("living") surfaces with different functionalities for high temperature applications using surface modification techniques followed by high temperature activation.
(2) Strategy and methodology development for long-term property preservation during high temperature application.
(1) Formation of a well-defined surface topography produced by local swelling and/or shrinking, which can, among others, influence the gas flow around the surface.
(2) Protection against heat and chemical attack.
(3) Self cleaning or rejection of deposits by microstructural and/or chemical effects.
(4) "Breathing" and "transpiration" by membrane functions (such as lubricant release or pick-up, release of depot phases, selective penetration of chemical elements or compounds).
(5) Capture of physical and chemical parameters (such as pressure, temperature, flow rate, barrier effects, chemical and physical indicator functions).
(6) Regeneration (self healing after surface damage).
All these properties can be achieved by an adequate chemical and/or physical surface pre-treatment followed by high temperature exposure (high temperature activation step). Potential methods are micro- and nanostructure modification of chemistry and geometry of surface and sub-surface areas, e. g., by micro alloying, ion implantation, PVD, CVD, thermal spraying and other deposition methods (masked, 3-D controlled, time-controlled or pulsed, local and global variation of chemical and physical process parameters), which act as precursors for the high temperature activation step. Major objectives of the Priority Programme are:
(1) Elaboration of basic scientific understanding for manufacturing of adapting ("living") surfaces with different functionalities for high temperature applications using surface modification techniques followed by high temperature activation.
(2) Strategy and methodology development for long-term property preservation during high temperature application.
DFG Programme
Priority Programmes
Projects
- Eine Haifischhaut für Hochtemperaturanwendungen - strömungsoptimierte Schutzschichten (Applicants Leyens, Christoph ; Reimers, Walter ; Schulz, Uwe ; Schütze, Michael )
- Gläser aus Siliziumoxykarbid mit adaptiven haifischartigen Oberflächentexturen: Kontrollierte Strukturierung und Simulation der Wärmeübertragung (Applicant Bockhorn, Henning )
- Herstellung und Charakterisierungsverfahren für nanoskalige magnetische Sensorphasen in Hochtemperatur-Schutzschichten (Applicant Quandt, Eckhard )
- Hochtemperatur-Funktionalisierung von adaptiven Oberflächen-Mikrostrukturen - "Haifischhaut" (Strömungsoptimierung) und Selbstreinigung - (Applicants Schaaf, Peter ; Wilden, Johannes )
- Hochtemperaturaktivierte Hartstoffschichten als funktionale Oberflächensysteme für Umformwerkzeuge (Applicants Bach, Friedrich-Wilhelm ; Bobzin, Kirsten )
- Innere Ausscheidungen als Template für oxidische Deckschichten mit hohem Emissionskoeffizienten und optimierter Barrierewirkung (Applicants Mayer, Joachim ; Quadakkers, Willem Joe )
- Koordinierungsaufgaben im Schwerpunktprogramm 1299: Adaptive Oberflächen für Hochtemperaturanwendungen - Das Haut-Konzept (Applicant Leyens, Christoph )
- Mikrobiologisch/chemisch erzeugte adaptive Oberflächen für keramische Hochtemperaturwerkstoffe (Applicants Kappler, Andreas ; Nickel, Ph.D., Klaus G. )
- Nanostrukturierte magnetische Dünnschicht-Komposite für Anwendungen in der Hochtemperatur-Sensorik (Applicants Ludwig, Alfred ; Quandt, Eckhard ; Stüber, Michael )
- Plasma-Diagnostik zur in situ Messung konventioeneller Plasmen und hoch metallionenhaltiger HIPIMS-Plasmen zum Ionenätzen und für die Abscheidung von Dünnschichten. (Applicant Leyens, Christoph )
- Projekt Analyse Technologietransfer Verwertungsagent - PATE-VA (Applicant Pechmann, Agnes )
- Selbstkontrolle der NOx-Katalysatoren durch bauteilintegrierten Sensoren bei Hochtemperaturanwendungen (Applicants Grünert, Wolfgang ; Saruhan-Brings, Bilge )
- Sensorfunktion für Hochtemperaturschutzschichten zur in situ Erfassung des Degradationszustands (Applicants Quadakkers, Willem Joe ; Quandt, Eckhard ; Schütze, Michael )
- Synthese und Charakterisierung von adaptiven, schadenstoleranten Keramikoberflächen auf der Basis von MAX-Phasen-Nanolaminaten (Applicants Leyens, Christoph ; Schneider, Ph.D., Jochen M. )
- Thermisch aktivierbare keramische Schutzschichten mit adaptiven Eigenschaften auf Basis präkeramischer Polymere (Applicants Motz, Günter ; Scheffler, Michael )
- Thermoresistant Ceramic Membrane with Integrated Gas Sensor for High Termperature Separation and Detection of Hydrogen and Carbon Monoxide (Applicants Gurlo, Aleksander ; Saruhan-Brings, Bilge ; Voigt, Ingolf ; Weimar, Udo )
Spokesperson
Professor Dr.-Ing. Christoph Leyens