Detailseite
Projekt Druckansicht

Regulatorische Mechanismen von Neuropeptiden auf das Ansiedlungsverhalten der Larve des marinen Wurms Platynereis dumerilii

Fachliche Zuordnung Evolutionäre Zell- und Entwicklungsbiologie der Tiere
Entwicklungsbiologie
Förderung Förderung von 2015 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 279299140
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

Through our investigation of the neuropeptidergic signalling networks in the Platynereis larval anterior nervous system (ANS), we revealed a surprisingly complex chemical connectome acting in the larva that overlays synaptic signalling. This discovery, facilitated by the advent of new technologies including single cell RNA-Seq and largescale receptor deorphanization, led us to explore further the evolution of neuropeptide signalling and its role in animal nervous systems. The cellular-level description of anatomy and signalling in a nerosecretory centre in the anterior larval brain of the marine polychaete Platynereis demonstrates the importance and complexity of neuropeptide signalling and shows how neuropeptides act as modulators of nervous system signalling to generate different behavioural outputs in larvae. We developed a novel approach combining classical connectomics with peptidergic connectomes generated from single cell RNA-Seq data. This analysis enables a more complete understanding of nervous system signalling in animals and is broadly applicable to similar datasets in any organism. Our collaborative discovery of a MIP-gated ion channel (MGIC) is the first peptide-gated ion channel to be activated by a neuropeptide other than FMRFamide. This discovery suggests a larger diversity of peptide-gated channels exists than is currently known. An exciting future avenue will be to use a broader sampling of lophotrochozoan taxa and reconstruct the evolution of ligand specificities of FMRFamideactivated sodium channels (FaNaCs) and MGICs. Finally, the results of our study of neuropeptide-like signalling in a placozoan show that this type of signalling can be used to coordinate complex behaviours in multicellular organisms, even in the absence of neurons.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung