Detailseite
Projekt Druckansicht

Optoelektrochemische Sensoren auf der Basis von Graphen für das simultane Messen von elektrischer und chemischer Aktivität von Einzelzellen

Fachliche Zuordnung Analytische Chemie
Experimentelle Physik der kondensierten Materie
Förderung Förderung von 2015 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 279144839
 
Erstellungsjahr 2020

Zusammenfassung der Projektergebnisse

Developing a tool that allows observing both the electrical and the chemical signals of living cells is one of the great challenges current research is focused on. Such a tool would be extremely helpful in deciphering the biochemical background of different diseases and in developing the appropriate treatment for those diseases. Therefore, Graphtivity set out to use graphene in developing novel tools to simultaneously ob‐ serve the electrical and chemical activity of living cells. As a very important particularity, Graphitivity ex‐ plored the possibility to observe cellular signals with opto‐electrochemical methods, that is, methods in which interfaces are perturbed electrochemically but observed optically (e.g., with surface plasmon reso‐ nance‐based imaging, SPRi) in order to gain spatial resolution down to the single cell dimensions. Several interfaces were developed (e.g., based on stacks with a thin layer of indium tin oxide, ITO) which are compatible not only with electrochemical methods but also with optical methods. These interfaces were modified with graphene or graphene‐based composites following several procedures and used with two purposes. First, they were used to detect signaling molecules (e.g., neurotransmitters such as dopamine). Second, they were used as substrate for cell adhesion, growth, and differentiation. In parallel, we deve‐ loped tools (e.g., microfluidic systems made of polydimethylsiloxanes, PDMS) for placing cells and sensing chemistries in well‐defined positions of our planar chips / interfaces, thus making their controlled investigation (and combined use) easier. Although SPRi proved to be not sensitive enough to facilitate observing signals from living cells, when this method was combined with an electrical impedance spectroscopy (EIS)‐specific, sinusoidal potential perturbation, it did allow making some of the highest spatial resolution (~ 500 nm) maps of the electrical impedance of living cells. When SPRi was replaced with reflected bright field microscopy (RBFM), the opto‐electrochemical detection of glucose and hydrogen peroxide was also possible. The opto‐electrochemical sensor for glucose sensing was also used at cellular level, however, improvements are still required. Results obtained with novel opto‐electrochemical approaches were compared with those obtained by more traditional methods whenever possible. To conclude, Graphtivity generated results which help defining the roles of both graphene and opto‐electrochemical methods in interfaces / sensors for living cells. In the same time, it strengthened the collaboration between partners from different fields and countries (as demonstrated by more than 9 papers jointly authored by 2 or more project partners), and opened research avenues worth pursuing.

Projektbezogene Publikationen (Auswahl)

  • “Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 2: Application to the analysis of calcitonin containing pharmaceutical formulation”, Electrochimica Acta 266 (2018) 364– 372
    A. Vasilescu, R. Ye, S. Boulahneche, S. Lamraoui, R. Jijie, M. S. Medjram, S. Gáspár, S. K. Singh, S. Kurungot, S. Melinte, R. Boukherroub, S. Szunerits
    (Siehe online unter https://doi.org/10.1016/j.electacta.2018.02.038)
  • “Electrophoretic approach for the modification of reduced graphene oxide nanosheets with diazonium compounds: Application for electrochemical lysozyme sensing”, ACS Applied Materials & Interfaces 9 (2017) 12823–12831
    Q. Wang, A. Vasilescu, Q. Wang, M. Li, R. Boukherroub, S. Szunerits
    (Siehe online unter https://doi.org/10.1021/acsami.6b15955)
  • “Flexible nanoholey patches for antibiotic free treatments of skin infections”, ACS Appl. Mater. Interfaces 9 (2017) 36665‐36674
    C. Li, R. Ye, J. Bouckaert, A. Zurutuza, D. Drider, T. Dumych, S. Paryzhak, V. Vovk, R. Bilyy, S. Melinte, M. Li, R. Boukherroub, and S. Szunerits
    (Siehe online unter https://doi.org/10.1021/acsami.7b12949)
  • “Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 1: Lysozyme aggregation at pH 2 and 7.4”, Electrochimica Acta 254 (2017) 375–383
    A. Vasilescu, S. Boulahneche, F. Chekin, S. Gaspar, M. S. Medjram, A. A. Diagne, S. K. Singh, S. Kurungot, R. Boukherroub, S. Szunerits
    (Siehe online unter https://doi.org/10.1016/j.electacta.2017.09.083)
  • “Electrochemical aptamer‐based biosensor for the detection of cardiac biomarkers”, ACS Omega 3 (2018) 12010‐12018
    I. Grabowska, N. Sharma, A. Vasilescu, M. Iancu, G. Badea, R. Boukherroub, S. Ogale, S. Szunerits
    (Siehe online unter https://doi.org/10.1021/acsomega.8b01558)
  • “Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen‐doped porous reduced graphene oxide electrode”, Sensors and Actuators B: Chemical 262 (2018) 180‐187
    F. Chekin, A. Vasilescu, R. Jijie, S.K. Singh, S. Kurungot, M. Iancu, G. Badea, R. Boukherroub, S. Szunerits
    (Siehe online unter https://doi.org/10.1016/j.snb.2018.01.215)
  • Dopamine functionalized cyclodextrins: Modification of reduced graphene oxide based electrodes and sensing of folic acid in human serum”, Analytical and Bioanalytical Chemistry 411 (2019) 5149–5157
    F. Chekin, V. Mishyn, A. Barras, J. Lyskawa, R. Ye, S. Melinte, P. Woisel, R. Boukherroub, S. Szunerits
    (Siehe online unter https://doi.org/10.1007/s00216-019-01892-1)
  • “Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide‐polyethyleneimine flexible nanoheaters”, Journal of Materials Chemistry B 7 (2019) 2771‐2781
    M. Budimir, R. Jijie, R. Ye, A. Barras, S. Melinte, A. Silhanek, Z. Markovic, S. Szunerits and R. Boukherroub
    (Siehe online unter https://doi.org/10.1039/c8tb01676c)
  • “Graphene modified electrodes for sensing doxorubicin hydrochloride in human plasma”, Analytical and Bioanalytical Chemistry 411 (2019) 1509–1516
    F. Chekin, V. Myshin, R. Ye, S. Melinte, S. K. Singh, S. Kurungot, R. Boukherroub, S. Szunerits
    (Siehe online unter https://doi.org/10.1007/s00216-019-01611-w)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung