Detailseite
Projekt Druckansicht

OSCAR - Bahn- und Spinströme in Kalten Atomischen Ringfälle

Fachliche Zuordnung Optik, Quantenoptik und Physik der Atome, Moleküle und Plasmen
Theoretische Physik der kondensierten Materie
Förderung Förderung von 2015 bis 2023
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 277810020
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

This DFG project allowed us to elucidate some previously overlooked aspects of transport in quasi-1D systems hosting multicomponent quantum fluids of different statistical nature. In particular, we first pointed out and then put on firm grounds a maybe surprising phenomenon as the Drude weight increase by orbital and repulsive interactions in fermionic ladder systems. Moreover, we cornered down a favorable regime for the observation of the so-far elusive collisionless drag for bosonic mixtures, taking further profit from the mesoscopic nature of typical cold atomic setups. The research activity within this project also contributed to further develop numerical methods for periodic boundary conditions (often instrumental for a clean calculation of currents and susceptibilities). We mention here that binary tree tensor networks have allowed us to treat disordered samples with an unprecedented precision for tensor networks algorithms, bridging the pre-existing gap with (sophisticate) Monte Carlo methods. In a spinoff, a time-dependent algorithm for persistent currents in rings have been put forward, too. We plan to deploy these instruments to open-source in the coming future.

Projektbezogene Publikationen (Auswahl)

  • “Superfluid density and quasi-long-range order in the one-dimensional disordered Bose–Hubbard model”, New J. Phys. 18, 015015 (2016)
    M. Gerster, M. Rizzi, F. Tschirsich, P. Silvi, R. Fazio, S. Montangero
    (Siehe online unter https://doi.org/10.1088/1367-2630/18/1/015015)
  • “Continuous matrix product states with periodic boundary conditions and an application to atomtronics”, Phys. Rev. B 95, 045145 (2017)
    D. Draxler, J. Haegeman, F. Verstraete, M. Rizzi
    (Siehe online unter https://doi.org/10.1103/PhysRevB.95.045145)
  • “Tuning the Drude weight of Dirac-Weyl fermions in one-dimensional ring traps”, Phys. Rev. B 96, 241112 (2017)
    M. Bischoff, J. Jünemann, M. Polini, M. Rizzi
    (Siehe online unter https://doi.org/10.1103/PhysRevB.96.241112)
  • “Detecting topology through dynamics in interacting fermionic wires”, Phys. Rev. Res. 2, 033200 (2020)
    A. Haller, P. Massignan, M. Rizzi
    (Siehe online unter https://doi.org/10.1103/PhysRevResearch.2.033200)
  • “Drude weight increase by orbital and repulsive interactions in fermionic ladders”, Phys. Rev. Res. 2, 023058 (2020);
    A. Haller, M. Rizzi, M. Filippone
    (Siehe online unter https://doi.org/10.1103/PhysRevResearch.2.023058)
  • “Exploring helical phases of matter in bosonic ladders”, Phys. Rev. Res. 2, 043433 (2020)
    A. Haller, A.S. Matsoukas-Roubeas, Y. Pan, M. Rizzi, M. Burrello
    (Siehe online unter https://doi.org/10.1103/PhysRevResearch.2.043433)
  • “Collisionless drag for a one-dimensional two-component Bose-Hubbard model”, Phys. Rev. Research 3, L022017 (2021)
    D. Contessi, D. Romito, M. Rizzi, A. Recati
    (Siehe online unter https://doi.org/10.1103/PhysRevResearch.3.L022017)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung