Detailseite
Projekt Druckansicht

Vine-Kopula-basierte Modellierung und Vorhersage von multivariaten realisierten Volatilitätszeitreihen

Antragstellerinnen / Antragsteller Professorin Dr. Claudia Czado; Professor Dr. Yarema Okhrin
Fachliche Zuordnung Statistik und Ökonometrie
Förderung Förderung von 2015 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 263890942
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

This project contributed to development of vine copula based models under different data structures occurring in econometrics and life sciences. These improved estimation and forecasting of realized volatility time series over standard approaches and as well provided first time development of vine based dependence models under right-censoring.

Projektbezogene Publikationen (Auswahl)

  • (2018) Vine copula based likelihood estimation of dependence patterns in multivariate event time data. Computational Statistics & Data Analysis 117: 109-127
    Barthel, Nicole, Candida Geerdens, Matthias Killiches, Paul Janssen, and Claudia Czado
    (Siehe online unter https://doi.org/10.1016/j.csda.2017.07.010)
  • (2019) Dependence modeling for recurrent event times subject to right-censoring with D-vine copulas. Biometrics 75.2: 439-451
    Barthel, Nicole, Candida Geerdens, Claudia Czado and Paul Janssen
    (Siehe online unter https://doi.org/10.1111/biom.13014)
  • (2019) Modelling temporal dependence of realized variances with vines. Econometrics and Statistics 12: 198-216
    Czado, Claudia, Eugen Ivanov, and Yarema Okhrin
    (Siehe online unter https://doi.org/10.1016/j.ecosta.2019.03.003)
  • (2020) A partial correlation vine based approach for modeling and forecasting multivariate volatility time-series. Computational Statistics & Data Analysis 142
    Barthel, Nicole, Claudia Czado, and Yarema Okhrin
    (Siehe online unter https://doi.org/10.1016/j.csda.2019.106810)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung