Detailseite
Projekt Druckansicht

Neue Funktionen von JNK in Neuronen: Wie JNK3 postsynaptische Gerüstproteine steuert

Fachliche Zuordnung Entwicklungsneurobiologie
Molekulare Biologie und Physiologie von Nerven- und Gliazellen
Förderung Förderung von 2014 bis 2020
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 261102178
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

In an essential set of experiments, we focussed on the functional links between JNK3 and the synaptic scaffold molecule SAP102. We demonstrated that the dynamics of SAP102 are negatively regulated by JNK inhibition, that SAP102 is a direct phosphorylation target of JNK3, and that SAP102 regulation by JNK is restricted to neurons that harbour mature synapses. We further demonstrate that SAP102 and JNK3 cooperate in the regulated trafficking of kainate receptors to the cell membrane. Specifically, we observe that SAP102, JNK3, and the kainate receptor subunit GluK2 exhibit overlapping expression at synaptic sites, and that modulating JNK activity influences the surface expression of the kainate receptor subunit GluK2 in a neuronal context. We also show that SAP102 participates in this process in a JNK-dependent fashion. In summary, our data support a model in which JNK-mediated regulation of SAP102 influences the dynamic trafficking of kainate receptors to postsynaptic sites, and thus shed light on common pathophysiological mechanisms underlying the cognitive developmental defects associated with diverse mutations. The results of this study contribute to our understanding of disease pathology in a specific subset of monogenic neurodevelopmental disorders. Importantly, our work highlights specific disease mechanisms that may be directly relevant for diverse genetic forms of cognitive delay, thus illuminating novel pathways that could serve as targets for the development of therapies for a broad spectrum of developmental disturbances. Moreover, our work contributes to the basic understanding of the physiological correlates of JNK inhibition; it is thus highly relevant for understanding the putative side effects of JNK inhibitors that are currently implemented in clinical trials for diverse diseases.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung