Detailseite
Projekt Druckansicht

Handlungs- und perzeptionsbezogenes Lernen für Statistische Maschinelle Übersetzung

Fachliche Zuordnung Bild- und Sprachverarbeitung, Computergraphik und Visualisierung, Human Computer Interaction, Ubiquitous und Wearable Computing
Förderung Förderung von 2014 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 259623987
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

Successful machine learning from complex structured data as in machine translation or semantic parsing requires large amounts of manually annotated training structures for supervised learning. The project investigates techniques to alleviate the annotation bottleneck by grounding meaning transfer in natural language processing in feedback from simulated or real-world interactive environments. The proposed algorithms for “response-based learning” can be analyzed theoretically in the framework of bandit/reinforcement learning. Important innovations concern theoretical and empirical justification for off-policy learning under deterministic logging, constituting a prerequisite to guarantee safe and stable response-based learning in commercial settings. The algorithms presented in the project have been successfully applied in academic and commercial settings.

Projektbezogene Publikationen (Auswahl)

  • (2014). Response-based learning for grounded machine translation. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), Baltimore, MD
    Riezler, S., Simianer, P., and Haas, C.
    (Siehe online unter https://doi.org/10.3115/v1/P14-1083)
  • (2015). Bandit structured prediction for learning from user feedback in statistical machine translation. In Proceedings of MT Summit XV, Miami, FL
    Sokolov, A., Riezler, S., and Urvoy, T.
  • (2016). A corpus and semantic parser for multilingual natural language querying of OpenStreetMap. In Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), San Diego, CA
    Haas, C. and Riezler, S.
    (Siehe online unter https://doi.org/10.18653/v1/N16-1088)
  • (2016). Multimodal pivots for image caption translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL), Berlin, Germany (Outstanding paper award)
    Hitschler, J., Schamoni, S., and Riezler, S.
  • (2017). Bandit structured prediction for neural sequence-to-sequence learning. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL), Vancouver, Canada
    Kreutzer, J., Sokolov, A., and Riezler, S.
    (Siehe online unter https://doi.org/10.18653/v1/P17-1138)
  • (2017). Counterfactual learning from bandit feedback under deterministic logging: A case study in statistical machine translation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Copenhagen, Denmark
    Lawrence, C., Sokolov, A., and Riezler, S.
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung