Detailseite
Projekt Druckansicht

Funktionalität und Rolle von CARMA2 in Psoriasis

Fachliche Zuordnung Dermatologie
Förderung Förderung von 2014 bis 2021
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 255227348
 
Erstellungsjahr 2021

Zusammenfassung der Projektergebnisse

Psoriasis is a very common autoimmune disease which is characterized by chronic activation of the immune system and epidermal hyperplasia. In this project we shed light on how keratinocytes become activated and which molecular mechanisms lead to the induction of antimicrobial peptides as well as proinflammatory chemokines and cytokines. We and others could demonstrate that CARMA2 mutations, which are found in psoriasis patients, drive the constitutive formation of a CARMA2-BCL10-MALT1 (CBM) complex in keratinocytes. CBM complex assembly promotes the activation of the transcription factor NF-κB, a well-known regulator of proinflammatory mediators. MALT1 acts not only as a scaffold protein but also as a protease and both its functions are essential for an optimal NF-κB activation. MALT1 protease inhibitors reduce the expression of cytokines and chemokines that are associated with psoriasis development, such as IL-17C, TNFα and CXCL-8, both in vitro and in vivo, highlighting their therapeutic potential. Infections, proinflammatory cytokines and mutations detected in psoriasis patients induce the expression of the IκBζ protein in immune cells and keratinocytes. IκBζ functions as a crucial transcriptional regulator for a specific subset of NF-κB target genes, the majority of which play an important role in the pathogenesis of psoriasis. Interestingly, global IκBζ knock-out in mice confers resistance to experimentally induced psoriasis, making IκBζ a bona fide drug target. Together with our collaboration partners, we discovered that IκBζ expression in keratinocytes, unlike in most immune cells, is crucial for the induction of skin inflammation. Furthermore, we could identify previously unknown IκBζ inducers in the skin, such as agonists of the receptor Dectin-1 or IL-36. As IκBζ lacks a targetable enzymatic activity, we investigated how IκBζ is regulated by posttranslational modifications. Using mass spectrometric analyses, we have identified several phosphorylation sites, which are mainly located in the N-terminus of IκBζ. We focused on a highly conserved triple threonine cluster that is presumably modified by the RAS-MAPK pathway, thereby negatively regulating the transcriptional activity of IκBζ. Collectively, we contributed with our research to an improved understanding of the keratinocyte-mediated immune response. We identified MALT1 and IκBζ as important regulators of proinflammatory signaling in keratinocytes and thus as promising targets for therapeutic intervention in inflammatory skin diseases.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung