Detailseite
Projekt Druckansicht

Kollektive nichtlineare Dynamik von Zilien und Geißeln: von n=2 zu n>>2 wechselwirkenden Zilien

Fachliche Zuordnung Biophysik
Theoretische Chemie: Moleküle, Materialien, Oberflächen
Förderung Förderung von 2014 bis 2023
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 254867216
 
Selbstorganisierte metachronale Wellen in Zilien-Teppichen repräsentieren ein Modellsystem für die spontane Entstehung räumlich-zeitlicher Ordnung in aktiver Materie. Hierbei repräsentiert jedes schlagende Zilium einen nichtlinearen biologischen Oszillator. Die Dynamik mehrerer solcher Oszillatoren ist durch die umgebende Flüssigkeit gekoppelt, wodurch kollektives Verhalten entsteht. Zilien-Teppiche finden sich auf den Oberflächen biologischer Mikroschwimmer, wie Volvox oder Paramecium, sowie in Atemwegen, Eileitern, und Hirnventrikeln höherer Tiere. Darüber hinaus repräsentieren Zilien-Teppiche ein Minimalsystem, um kollektive Synchronisation in Ensembles von Mikroschwimmern mit je einem Zilium zu verstehen (z. B. Spermienzellen), wo zusätzlich Bewegungsfreiheitsgrade auftreten.In diesem Projekt schlagen wir eine neue theoretische Beschreibung der kollektiven Dynamik in Zilien-Teppichen vor, wobei ein besonderes Augenmerk auf die Wechselwirkung zwischen der geordneten Ausrichtung der Zilien und deren Synchronisation gelegt wird. Damit können wir die Kopplung von räumlicher Ordnung und zeitlicher Ordnung in einem wichtigen Modellsystem verstehen.Um dieses Ziel zu erreichen, schlagen wir einen theoretischen Formalismus vor, Titel: "Lagrange-Mechanik aktiver Systeme (LAMAS)", um Fluid-Struktur-Wechselwirkungen für aktive, elastische Strukturen, wie es Zilien sind, zu beschreiben. Dieser Formalismus verallgemeinert die klassische Lagrange-Mechanik für konservative und dissipative Systeme auf aktive Systeme. Wesentliche Bestandteile dieses Formalismus wurden bereits in der ersten Förderphase für den Fall von n=2 Zilien erfolgreich umgesetzt und sollen nun auf den Fall von n>>2 Zilien erweitert werden. Die bisherigen Ergebnisse umfassen eine Theorie aktiver Fluktuationen des Zilien-Schlags, die Last-Antwort des Ziliums, sowie eine Theorie hydrodynamischer Synchronisation von n=2 Zilien.Durch die Entwicklung des vorgeschlagenen Formalismus für das Modellsystem von Zilien-Teppichen, unter Berücksichtigung von Rotationsfreiheitsgraden für die Ausrichtung der einzelnen Zilien, erwarten wir neue Physik kollektiver Dynamik von biologischen Mikroschwimmern.Wir verwenden innovative Methoden, wie effiziente Multipole Boundary-Element-Methoden zur Lösung der Stokes-Gleichung, welche die Hydrodynamik des Systems beschreibt. Hydrodynamische Wechselwirkungen zwischen Zilien werden durch verallgemeinerte Faxen-Gesetze beschrieben. Die Plastizität der Form des Geißelschlages wird durch die Betrachtung von Haupt-Deformationsmoden mit variablen Amplituden berücksichtigt.Unser innovativer Modellierungsansatz verbindet verschiedene im SPP vertretene theoretische Ansätze, von minimalen theoretischen Beschreibungen mit wenigen Freiheitsgraden zu detaillierten, aber aufwendigen Simulationen, die quantitative Vorhersagen ermöglichen. Diese Forschung ist darüberhinaus relevant für das Design zukünftiger bio-mimetischer Systeme, z. B. künstlichen Zilien-Teppichen.
DFG-Verfahren Schwerpunktprogramme
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung