Wie Hydrodynamik die kollektive Bewegung von Mikroschwimmern beeinflusst: Eine teilchenbasierte Simulationsstudie
Zusammenfassung der Projektergebnisse
Microswimmers such as bacteria move in a fluid environment, where they generate flow fields with which they interact with bounding surfaces and neighboring microswimmers. Within the six-years period of the SPP: Microswimmers - From Single Particle Motion to Collective Behavior, our goal was to perform full hydrodynamic simulations of a collection of model microswimmers called squirmers to explore their emergent collective dynamics in different settings due to their hydrodynamic interactions. For solving the Navier-Stokes equations that govern fluid flow also in the relevant limit of small Reynolds numbers, where inertia is negligible, we used the mesoscopic method called multi-particle collision dynamics. During the six-years period of the SPP we published a total of 13 publications on topics connected to the project including the Topical Review. The model microswimmer squirmer is a spherical particle with a prescribed velocity field on its surface, which propels the squirmer through the fluid. With the two leading velocity modes, one can adjust the squirmer to assume one of the relevant microswimmer types: neutral or pusher/puller. The squirmer was introduced by Lighthill in 1952 and later by Blake to model ciliated microswimmers. In our project, we first studied the landmark of activity, the motility-induced phase separation, where self-propelled particles at sufficiently high density and swimming velocity phase separate into a dilute gas and a dense cluster phase. In our work we saw clear indications for the importance of fluid flow since the binodal to the gas phase depends on mean density. Furthermore, we could clarify the difference of swim pressure between the two phases. It is due to squirmers at the cluster boundary that try to pump fluid out of the cluster. A large portion of the project work was devoted to study squirmers under gravity. Already a single squirmer has quite an involved dynamic if its swimming velocity is smaller than its bulk sedimentation velocity. Due to hydrodynamic interactions with the surface, the swimming velocity of a neutral squirmer points upwards and floats above the bottom surface with frequent excursion downwards when the swimming velocity tilts due to thermal noise. For strong pullers we see wall pinning and for strong pushers recurrent floating and sliding. Away from boundaries, single microswimmers show an exponential sedimentation profile. However, when simulating a large collection of the squirmers, we also observed a region with an exponential density profile, which is not at all obvious. The density profile is very dynamic and convection cells due collective squirmer motion are visible. Under very strong gravity and smaller squirmer number, a single monolayer of squirmers forms at the bottom surface. Depending on the squirmer type and mean area density, one observes a variety of different dynamic structures. Besides kissing and (chaotically) swarming squirmers, the most appealing one is a hydrodynamic Wigner fluid, where upwards pointing squirmers repel each other due to flow fields from their neighbors. Finally, making the squirmers bottom-heavy so that a torque acts, which aligns the swimming direction upwards, we observed further emergent collective dynamics. First, the exponential sedimentation profile becomes inverted for sufficiently large swimming velocities. Second, for large torques and smaller swimming velocities a porous cluster occurs that floats above the bottom surfaces, from which single squirmers spawn. Third and most interestingly, for medium torques and swimming velocities squirmer convection rolls develop at the bottom surface that are fed by plumes of collectively sinking squirmers. For all this gyrotaxis a combination of sensing gravity and reorienting by flow is relevant. The article was selected as EPJE highlight and chosen as "front cover picture". Towards the end of the project, we started to investigate squirmer rods made from squirmers linked together, which model, for example, E. coli bacteria. Depending on aspect ratio, area density, and swimmer type, swarms and jammed/dynamic clusters are observed. Most interestingly, pusher rods show active turbulence at intermediate densities, as a compromise between disordering hydrodynamic and aligning steric interactions.
Projektbezogene Publikationen (Auswahl)
- Phys. Rev. Lett.. Active phase and amplitude fluctuations of flagellar beating 113, 048101 (2014)
R. Ma, G. S. Klindt, I. H. Riedel-Kruse, F. Jülicher, B. M. Friedrich
(Siehe online unter https://doi.org/10.1103/physrevlett.113.048101) - Flagellar motility in eukaryotic human parasites. Semin. Cell Dev. Biol. 46, 113 (2015)
T. Krueger, M. Engstler
(Siehe online unter https://doi.org/10.1016/j.semcdb.2015.10.034) - Fluid transport via pneumatically actuated waves on a ciliated wall. J. Micromech. Microeng. 25, 125009 (2015)
A. Rockenbach, V. Mikulich, C. Brücker, U. Schnakenberg
(Siehe online unter https://doi.org/10.1088/0960-1317/25/12/125009) - Physics of microswimmers – single particle motion and collective behavior: a review, Rep. Prog. Phys. 78, 055601 (2015)
J. Elgeti et al.
(Siehe online unter https://doi.org/10.1088/0034-4885/78/5/056601) - Sperm navigation along helical paths in 3D chemoattractant landscapes. Nat. Commun. 6, 7985 (2015)
J. F. Jikeli, L. Alvarez, B. M. Friedrich, L. G. Wilson, R. Pascal, R. Colin, M. Pichlo, A. Rennhack, C. Brenker, U. B. Kaupp
(Siehe online unter https://doi.org/10.1038/ncomms8985) - Tuned, driven, and active soft matter, Phys. Rep. 554, 1 (2015)
A. Menzel
(Siehe online unter https://doi.org/10.1016/j.physrep.2014.10.001) - Active Particles in Complex and Crowded Environments, 88, 45006 (2016)
C. Bechinger et al.
(Siehe online unter https://doi.org/10.1103/RevModPhys.88.045006) - Bacterial swarmer cells in confinement: a mesoscale hydrodynamic simulation study. Soft Matter 12, 8316 (2016)
T. Eisenstecken, J. Hu, R. G. Winkler
(Siehe online unter https://doi.org/10.1039/c6sm01532h) - Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. Nano Lett. 16, 555 (2016)
M. Medina-Sánchez, L. Schwarz, A. K. Meyer, F. Hebenstreit, O. G. Schmidt
(Siehe online unter https://doi.org/10.1021/acs.nanolett.5b04221) - Curling Liquid Crystal Microswimmers: A Cascade of Spontaneous Symmetry Breaking. Phys. Rev. Lett. 117, 048003 (2016)
C. Krüger, G. Klös, C. Bahr, C. C. Maass
(Siehe online unter https://doi.org/10.1103/physrevlett.117.048003) - Dynamical density functional theory for microswimmers. J. Chem. Phys. 144, 024115 (2016)
A. M. Menzel, A. Saha, C. Hoell, H. Löwen
(Siehe online unter https://doi.org/10.1063/1.4939630) - Emergent behavior in active colloids, J. Phys. Condens. Matter 28, 253001 (2016)
A. Zöttl et al.
(Siehe online unter https://doi.org/10.1088/0953-8984/28/25/253001) - Load response of the flagellar beat. Phys. Rev. Lett. 117, 258101 (2016)
G. S. Klindt, C. Ruloff, C. Wagner, B. M. Friedrich
(Siehe online unter https://doi.org/10.1103/physrevlett.117.258101) - Manipulation of small particles at solid liquid interface: light driven diffusioosmosis. Scientific Reports 6, 36443 (2016)
D. Feldmann, S. R. Maduar, M. Santer, N. Lomadze, O. I. Vinogradova, S. Santer
(Siehe online unter https://doi.org/10.1038/srep36443) - Moving charged particles in lattice Boltzmann-based electrokinetics. J. Chem. Phys. 145, 214102 (2016)
M. Kuron, G. Rempfer, F. Schornbaum, M. Bauer, C. Godenschwager, C. Holm, J. de Graaf
(Siehe online unter https://doi.org/10.1063/1.4968596) - Phase Separation and Coexistence of Hydrodynamically Interacting Microswimmers. Soft Matter 12, 9821 (2016)
J. Blaschke, M. Maurer, K. Menon, A. Zöttl, H. Stark
(Siehe online unter https://doi.org/10.1039/c6sm02042a) - Phototaxis of synthetic microswimmers in optical landscapes, Nat. Commun. 7, 12828 (2016)
C. Lozano et al.
(Siehe online unter https://doi.org/10.1038/ncomms12828) - Sperm as microswimmers - navigation and sensing at the physical limit. Eur. Phys. J. Spec. Top. 225, 2119 (2016)
U. B. Kaupp, L. Alvarez
(Siehe online unter https://doi.org/10.1140/epjst/e2016-60097-1) - Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots, Nat. Mat. 15, 647 (2016)
S. Palagi et al.
(Siehe online unter https://doi.org/10.1038/nmat4569) - Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647 (2016)
S. Palagi, A. G. Mark, S. Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, F. Giesselmann, D. S. Wiersma, E. Lauga, P. Fischer
(Siehe online unter https://doi.org/10.1038/nmat4569) - Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps. Proc. Natl. Acad. Sci. USA 114, 6340 (2017)
M. J. Kühn, F. K. Schmidt, B. Eckhardt, K. M. Thormann
(Siehe online unter https://doi.org/10.1073/pnas.1701644114) - Concept, synthesis, and structural characterization of DNA origami based self-thermophoretic nanoswimmers. Phys. Status Solidi 214, 1600957 (2017)
A. Herms, K. Guenther, E. Sperling, A. Heerwig, A. Kick, F. Cichos, M. Mertig
(Siehe online unter https://doi.org/10.1002/pssa.201600957) - Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system. eLife 6, e27656 (2017)
S. Schuster, T. Krueger, I. Subota, S. Thusek, B. Rotureau, A. Beilhack, M. Engstler
(Siehe online unter https://doi.org/10.7554/elife.27656) - Human sperm steer with second harmonics of the flagellar beat. Nat. Commun. 8, 1 (2017)
G. Saggiorato, L. Alvarez, J. F. Jikeli, U. B. Kaupp, G. Gompper, J. Elgeti
(Siehe online unter https://doi.org/10.1038/s41467-017-01462-y) - Hydrodynamic front-like swarming of phoretically active dimeric colloids. Europhys. Lett. 119, 66007 (2017)
M. Wagner, M. Ripoll
(Siehe online unter https://doi.org/10.1209/0295-5075/119/66007) - Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents. Soft Matter 13, 1200 (2017)
A. T. Brown, W. C. K. Poon, C. Holm, J. de Graaf
(Siehe online unter https://doi.org/10.1039/c6sm01867j) - Medical microbots need better imaging and control. Nature 545, 407 (2017)
M. Medina-Sánchez, O. G. Schmidt
(Siehe online unter https://doi.org/10.1038/545406a) - Microfluidic Pumping by Micromolar Salt Concentrations. Soft Matter 13, 1505 (2017)
R. Niu, P. Kreissl, A. T. Brown, G. Rempfer, D. Botin, C. Holm, T. Palberg, J. de Graaf
(Siehe online unter https://doi.org/10.1039/c6sm02240e) - Mode-coupling theory for active Brownian particles. Phys. Rev. E 96, 062608 (2017)
A. Liluashvili, J. Onody, T. Voigtmann
(Siehe online unter https://doi.org/10.1103/physreve.96.062608) - Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures, Adv. Materials 29, 1701328 (2017)
D.P. Singh et al.
(Siehe online unter https://doi.org/10.1002/adma.201701328) - Self-assembly of colloidal molecules due to long-range attractions in self-generated electro-osmotic flow. Phys. Rev. Lett. 119, 028001 (2017)
R. Niu, T. Palberg, T. Speck
(Siehe online unter https://doi.org/10.1103/physrevlett.119.028001) - Confined active Brownian particles: theoretical description of propulsion-induced accumulation, New J. Phys. 20, 015001 (2018)
S. Das et al.
(Siehe online unter https://doi.org/10.1088/1367-2630/aa9d4b) - Critical behavior of active Brownian particles. Phys. Rev. E 98, 030601 (2018)
J. T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, P. Virnau
(Siehe online unter https://doi.org/10.1103/physreve.98.030601) - Diffusion Measurements of Swimming Enzymes with Fluorescence Correlation Spectroscopy. Acc. Chem. Res. 51, 1911 (2018)
J. Günther, M. Börsch, P. Fischer
(Siehe online unter https://doi.org/10.1021/acs.accounts.8b00276) - Elastic capsules at liquid-liquid interfaces. Soft Matter 14, 5665 (2018)
J. Hegemann, H.-H. Boltz, J. Kierfeld
(Siehe online unter https://doi.org/10.1039/c8sm00316e) - Micro- and nano-motors: the new generation of drug carriers, Therapeutic Delivery 9, 303 (2018)
M. Medina-Sanchez et al.
(Siehe online unter https://doi.org/10.4155/tde-2017-0113) - Photogravitactic Microswimmers, Adv. Funct. Materials 28, 1706660 (2018)
D.P. Singh et al.
(Siehe online unter https://doi.org/10.1002/adfm.201706660) - Self-organization of active particles by quorum sensing rules, Nat. Commun. 9, 3232 (2018)
T. Baeuerle et al.
(Siehe online unter https://doi.org/10.1038/s41467-018-05675-7) - Self-organization of active particles by quorum sensing rules. Nat. Commun. 9, 3232 (2018)
T. Bäuerle, A. Fischer, T. Speck, C. Bechinger
(Siehe online unter https://doi.org/10.1038/s41467-018-05675-7) - Self-organization of active particles by quorum sensing rules. Nat. Commun. 9, 3232 (2018)
T. Bäuerle, A. Fischer, T. Speck, C. Bechinger
(Siehe online unter https://doi.org/10.1038/s41467-018-05675-7) - Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat. Commun. 9, 5369 (2018)
M. J. Kühn, F. K. Schmidt, N. E. Farthing, F. M. Rossmann, B. Helm, L. G. Wilson, B. Eckhardt, K. M. Thormann
(Siehe online unter https://doi.org/10.1038/s41467-018-07802-w) - Spatiotemporal control of cargo delivery performed by programmable self-propelled Janus droplets. Commun. Phys. 1, 23 (2018)
M. Li, M. Brinkmann, I. Pagonabarraga, R. Seemann, J.-B. Fleury
(Siehe online unter https://doi.org/10.1038/s42005-018-0025-4) - Spontaneous synchronization of beating cilia: An experimental proof using visionbased control. Fluids 3, 30 (2018)
M. Elshalakani, C. Brücker
(Siehe online unter https://doi.org/10.3390/fluids3020030) - A Light-Driven Microgel Rotor. Small 15, 1903379 (2019)
H. Zhang, L. Koens, E. Lauga, A. Mourran, M. Möller, M
(Siehe online unter https://doi.org/10.1002/smll.201903379) - Active particles sense micromechanical properties of glasses. Nat. Mater. 18, 1118 (2019)
C. Lozano, J. R. Gomez-Solano, C. Bechinger
(Siehe online unter https://doi.org/10.1038/s41563-019-0446-9) - Cyclic nucleotide-specific optogenetics highlights compartimentalization of the sperm flagellum into cAMP microdomains. Cells 8, 648 (2019)
D. N. Raju, J. N. Hansen, S. Raßmann, B. Stüven, J. F. Jikeli, T. Strünker, H. G. Körschen, A. Möglich, D. Wachten
(Siehe online unter https://doi.org/10.3390/cells8070648) - Multi-species dynamical density functional theory for microswimmers: derivation, orientational ordering, trapping potentials, and shear cells. J. Chem. Phys. 151, 064902 (2019)
C. Hoell, H. Löwen, A. M. Menzel
(Siehe online unter https://doi.org/10.1063/1.5099554) - Multiparticle collision dynamics for tensorial nematodynamics. Phys. Rev. E 99, 063329 (2019)
S. Mandal, M. G. Mazza
(Siehe online unter https://doi.org/10.1103/physreve.99.063319) - Optimal motion of triangular magnetocapillary swimmers. J. Chem. Phys. 151, 124707 (2019)
A. Sukhov, S. Ziegler, Q. Xie, O. Trosman, J. Pande, G. Grosjean, M. Hubert, N. Vandewalle, A.-S. Smith, J. Harting
(Siehe online unter https://doi.org/10.1063/1.5116860) - Soft microrobots employing nonequilibrium actuation via plasmonic heating. Adv. Mater. 29, 1604825 (2019)
A. Mourran, H. Zhang, R. Vinokur, M. Möller
(Siehe online unter https://doi.org/10.1002/adma.201604825) - Sperm motility in modulated microchannels. New J. Phys. 21, 013016 (2019)
S. Rode, J. Elgeti, G. Gompper
(Siehe online unter https://doi.org/10.1088/1367-2630/aaf544) - Swimming with magnets: from biological organisms to synthetic devices. Phys. Rep. 789, 1 (2019)
S. Klumpp, C. T. Lefèvre, M. Bennet, D. Faivre
(Siehe online unter https://doi.org/10.1016/j.physrep.2018.10.007) - Comparative Studies of Light-Responsive Swimmers: Janus Nanorods versus Spherical Particles. Langmuir 36, 12504 (2020)
A. Eichler-Volf, T. Huang, F. Vazquez Luna, Y. Alsaadawi, S. Stierle, G. Cuniberti, M. Steinhart, L. Baraban, A. Erbe
(Siehe online unter https://doi.org/10.1021/acs.langmuir.0c01913) - Computational models for active matter, Nat. Rev. Phys. 2, 181 (2020)
M. Shaebani et al.
(Siehe online unter https://doi.org/10.1038/s42254-020-0152-1) - Emergence of bimodal motility in active droplets. Phys. Rev. X (2020)
B. V. Hokmabad, R. Dey, M. Jalaal, D. Mohanty, M. Almukambetova, K. A. Baldwin, D. Lohse, C. C. Maass
(Siehe online unter https://doi.org/10.1103/PhysRevX.11.011043) - Emergent collective dynamics of bottom-heavy squirmers under gravity. Eur. Phys. J. E 43, 26 (2020)
F. Rühle, H. Stark
(Siehe online unter https://doi.org/10.1140/epje/i2020-11949-8) - Extremely Long-Range Light-Driven Repulsion of Porous Microparticles. Langmuir 36, 6994 (2020)
D. Feldmann, P. Arya, T. Y. Molotilin, N. Lomadze, A. Kopyshev, O. I. Vinogradova, S. Santer
(Siehe online unter https://doi.org/10.1021/acs.langmuir.9b03270) - High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria. eLife 9, e47551 (2020)
K. Bente, S. Mohammadinejad, M. A. Charsooghi, F. Bachmann, A. Codutti, C. T. Lefèvre, S. Klumpp, D. Faivre
(Siehe online unter https://doi.org/10.7554/elife.47551) - Inverse Solidification Induced by Active Janus Particles. Adv. Funct. Mater. 30, 2003851 (2020)
T. Huang, V. R. Misko, S. Gobeil, X. Wang, F. Nori, J. Schütt, J. Fassbender, G. Cuniberti, D. Makarov, L. Baraban
(Siehe online unter https://doi.org/10.1002/adfm.202003851) - Kinetics of Active Water/Ethanol Janus Droplets. Soft Matter 16, 6803 (2020)
M. Li, M. Hosseinzadeh, I. Pagonabarraga, R. Seemann, M. Brinkmann, J.-B. Fleury
(Siehe online unter https://doi.org/10.1039/D0SM00460J) - Machine Learning for Active Matter. Nat. Mach. Intell. 2, 94 (2020)
F. Cichos, K. Gustavsson, B. Mehlig, G. Volpe
(Siehe online unter https://doi.org/10.1038/s42256-020-0146-9) - Molecular mechanism underlying the action of zona-pellucida glycoproteins on mouse sperm. Front. Cell Dev. Biol. 468, 111 (2020)
M. Balbach, H. Hamzeh, J. F. Jikeli, C. Brenker, C. Schiffer, J. N. Hansen, C. Trötschel, L. Jovine, L. Han, H. Florman, U. B. Kaupp, T. Strünker, D. Wachten
(Siehe online unter https://doi.org/10.3389/fcell.2020.572735) - Snapping elastic disks as microswimmers: swimming at low Reynolds numbers by shape hysteresis. Soft Matter 16, 7088 (2020)
C. Wischnewski, J. Kierfeld
(Siehe online unter https://doi.org/10.1039/d0sm00741b) - The 2020 Motile Active Matter Roadmap, J. Phys. Condens. Matter 32, 193001 (2020)
G. Gompper et al.
(Siehe online unter https://doi.org/10.1088/1361-648x/ab6348) - Active particles bound by information flows. Nat. Commun. 9, 3864 (2021)
U. Khadka, V. Holubec, H. Yang, F. Cichos
(Siehe online unter https://doi.org/10.1038/s41467-018-06445-1) - Collective behavior of thermophoretic dimeric active colloids in threedimensional bulk. Eur. Phys. J. E (2021)
M. Wagner, S. Roca-Bonet, M. Ripoll
(Siehe online unter https://doi.org/10.1140/epje/s10189-021-00043-8) - Flagellar arrangements in elongated peritrichous bacteria: bundle formation and swimming properties. Eur. Phys. J. E 44, 17 (2021)
J. Clopés, R. G. Winkler
(Siehe online unter https://doi.org/10.1140/epje/s10189-021-00027-8) - Regimes of motion of magnetocapillary swimmers. Europhys. J. E (2021)
A. Sukhov, M. Hubert, G. Grosjean, O. Trosman, S. Ziegler, Y. Collard, N. Vandewalle, A.-S. Smith, J. Harting
(Siehe online unter https://doi.org/10.1140/epje/s10189-021-00065-2) - Surfactant-loaded capsules as Marangoni microswimmers at the air-water interface: Symmetry breaking and spontaneous propulsion by surfactant diffusion and advection. Europhys. J. E 44, 21 (2021)
H. Ender, A.-K. Froin, H. Rehage, J. Kierfeld
(Siehe online unter https://doi.org/10.1140/epje/s10189-021-00035-8)