Neurokognition der Verarbeitung und des Erlernens von Brüchen
Zusammenfassung der Projektergebnisse
Taken together, studies 1 and 2 of our project showed that there are domain-specific and domaingeneral aspects of content-specific fraction processing, which determine the difficulty of fractions. Moreover, results of study 3 indicated that domain-specific magnitude processing of fractions can be improved by training, even if this training uses different notations. In addition to this content-specific fraction processing, there were also affective aspects which can influence and even hinder fraction processing and which are also driven by the difficulty of the fraction task. In this vein, results of study 4 suggested that negative affective responses to difficult math tasks (in this case proportions) seem to occur in all individuals, but the ability to sufficiently regulate these affective reactions seems to reduce the negative effect on actual performance. Therefore, we suggest that a training of domain-general emotion regulation might be beneficial for content-specific fraction learning and processing. Nevertheless, it is up to future studies to evaluate these claims.
Projektbezogene Publikationen (Auswahl)
- (2015). Comparing a single case to a control group - Applying linear mixed effects models to repeated measures data. Cortex, 71, 148-159
Huber, S., Klein, E., Moeller, K., & Willmes, K.
(Siehe online unter https://doi.org/10.1016/j.cortex.2015.06.020) - (2015). The influence of math anxiety on symbolic and non-symbolic magnitude processing. Frontiers in Psychology, 6:1621
Dietrich, J. F., Huber, S., Moeller, K., & Klein, E.
(Siehe online unter https://doi.org/10.3389/fpsyg.2015.01621) - (2016). A systematic investigation of accuracy and response time based measures used to index ANS acuity. PLOS ONE, 11(9):e0163076
Dietrich, J. F., Huber, S., Klein, E., Willmes, K., Pixner, S., & Moeller, K.
(Siehe online unter https://doi.org/10.1371/journal.pone.0163076) - (2016). Considering structural connectivity in the triple code model of numerical cognition: Differential connectivity for magnitude processing and arithmetic facts. Brain Structure & Function, 221(2), 979-95
Klein, E., Suchan, J., Moeller, K., Karnath, H.-O., Knops, A., Wood, G., Nuerk, H.-C., & Willmes, K.
(Siehe online unter https://doi.org/10.1007/s00429-014-0951-1) - (2016). Fact learning in complex arithmetic – The role of the angular gyrus revisited. Human Brain Mapping, 37, 3061-3079
Bloechle, J., Huber, S., Bahnmueller, J., Rennig, J., Willmes, K., Cavdaroglu, S., Moeller, K., & Klein, E.
(Siehe online unter https://doi.org/10.1002/hbm.23226) - (2016). Insights into numerical cognition - Considering eyefixations in number processing and arithmetic. Psychological Research, 80, 334-359
Mock, J., Huber, S., Klein, E., & Moeller, K.
(Siehe online unter https://doi.org/10.1007/s00426-015-0739-9) - (2018). Magnitude processing of symbolic and non-symbolic proportions: an fMRI study. Behavioral and Brain Functions, 14:9
Mock, J., Huber, S., Bloechle, J., Dietrich, J.F., Bahnmueller, J., Rennig, J., Klein, E., Moeller, K.
(Siehe online unter https://doi.org/10.1186/s12993-018-0141-z) - (2018). Neuro-cognitive mechanisms of global Gestalt perception in visual quantification. Neuroimage, 181, 359-369
Bloechle, J., Huber, S., Klein, E., Bahnmueller, J., Moeller, K., & Rennig, J.
(Siehe online unter https://doi.org/10.1016/j.neuroimage.2018.07.026)