Detailseite
Projekt Druckansicht

Non-consumptive effects of spiders on herbivore and carnivore prey: occurrence, importance, and mechanisms

Fachliche Zuordnung Ökologie und Biodiversität der Tiere und Ökosysteme, Organismische Interaktionen
Förderung Förderung von 2012 bis 2014
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 206710243
 
Erstellungsjahr 2014

Zusammenfassung der Projektergebnisse

In this project, we investigated antipredator behavior across spider and insect species of a wide taxonomic range. We tested how behavioral responses to chemotactile predator cues are affected by life-history traits of predator and prey, and how they cascades down to other trophic levels. Besides these predator-prey interactions based on chemotactile cues in spiders and insects, we also investigated competitor-competitor interactions based on chemotactile cues in ants. We found that antipredator behavior among terrestrial arthropods (here defined as change in movement pattern) is less widespread and harder to detect than expected from the literature. Out of >100 predator-prey species combinations, only eight showed significant antipredator behavior in laboratory experiments. However, certain species, notably the wood cricket Nemobius sylvestris responded to cues of spiders, and adjusted their behavior according to spider species, spider commonness and spider-cricket size ratio. In laboratory and field experiments involving insects and plants, spider cues reduced herbivory and significantly altered arthropod communities. Formica ants respond to chemically very different cues such as those of spiders and crickets, and probably use them to find prey. Ants also strongly responded to chemical cues of other ant species. Subordinate ants usually avoided cues of dominant ones, whereas dominant species either ignored or approached cues of subordinates. Our results indicate that ants are particularly well suited for the study of non-consumptive effects because of their intense chemical communication and the relatively well-known substances involved. Effects of ant chemical cues on other arthropods will be addressed in future research. Furthermore, interspecific interactions and co-occurrence patterns among ants, and hence community composition, may be strongly mediated by chemical cues. The importance of these cues for the success of invasive species will be addressed in a follow-up project.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung