Detailseite
Projekt Druckansicht

Die Ähnlichkeit von fluidisierten Auswurfdecken von double-layer ejecta (DLE) Kratern und long run-out landslides: Morphometrie und Modellierung

Fachliche Zuordnung Paläontologie
Geodäsie, Photogrammetrie, Fernerkundung, Geoinformatik, Kartographie
Förderung Förderung von 2011 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 195366123
 
Erstellungsjahr 2016

Zusammenfassung der Projektergebnisse

Key results of the first part: 1) Based on a rigorous GIS-based compilation of new borehole data, analyses of all geological and topographic data from maps, and outcrops we could demonstrate for the first time that the Ries ejecta blanket contains a massive and continuous concentrically trending rampart structure at 1.45–2.12 crater radii from the crater center. Ejecta distribution and thickness, as well as the ejecta fabric indicate the presence of fluids during the emplacement process. A consequence of this is that the emplacement mode of ejecta derived from lunar impact craters cannot be applied to terrestrial impact craters. 2) The ejecta blanket of the Ries crater shows striking similarities to Martian craters, in particular, those with double-layered ejecta morphologies. The position of the massive rampart is almost identical to that of Martian craters. 3) The ejecta layers of the investigated double-layer ejecta (DLE) craters on Mars are compositionally distinct as indicated by the analysis of CRISM data. 4) The inner ejecta layer of DLE craters superimposes the outer ejecta layer which rules out previous models e.g. by Boyce and Mouginis-Mark (2006). Based on our high-resolution remote sensing studies we derived a phenomenological model for the formation DLE craters. The inner ejecta layer moves as a translational slide whereas the outer, more fluid-rich ejecta blanket flows as a debris flow or debris avalanche. Key results of the second part: 1) The striations of all study objects are scaled versions of a common shape. The scaleinvariance was revealed by the frequency- size distribution of the spectrum of the topography tracks obtained from FFT analysis. The power spectral densities show a power law dependency on wavelength with an exponent of ~2-2.4, which is generally reserved for Brownian motion. 2) Longitudinal topography tracks along ridges reveal an undulating surface similar to that observed in perpendicular profiles. The dimensions of the minima and maxima have the same characteristics, including the scale-invariance with a power law exponent of ~2. This implies the formation of a scale invariant wavelike pattern in two directions and indicates that the formation process is more complex than apprehended. 3) The ratios of ridge height and the absolute flow thickness have constant ratios between ~0.02-0.22 on landslide deposits, with stronger variations for impact crater ejecta blankets in areas of rapid thickening and thinning of the deposit. This constant ratio can be implemented as a tool to estimate flow thickness of deposits where the geometry of the substrate is unknown. This can help improve the volume estimation of landslide and impact crater ejecta deposits.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung