Detailseite
Projekt Druckansicht

Assimilation of hyperspectral and laser scanning data: Extension and transfer of a regional crop growth model to Northeast China

Fachliche Zuordnung Physische Geographie
Förderung Förderung von 2010 bis 2015
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 193205824
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

In the project we focused on two major objectives, (i) agro-ecosystem modelling on regional scale in the intensively used agricultural region of the Sanjiang Plain, Heilongjiang Province, Northeast China, and - within this context – (ii) to improve remote sensing data analysis of optical hyperspectral sensors and laser scanners to derive crop traits. In the context of this project, we proofed for the first time that UAV-based remote sensing data and terrestrial laser scanning (TLS) can be utilized for monitoring rice growth and height which is an estimator for rice biomass. The latter is important for estimating N uptake. We also investigated the potential of hyperspectral field data for crop trait estimation as well as for groundtruthing purposes of purchased satellite data. Furthermore, we linked satellite remote sensing data analysis with the DNDC model and improved satellite-based monitoring of rice nitrogen status. Originally, it was planned to extend the DANUBIA crop growth model for modelling rice growth in the study area. However, it was not possible to develop needed cultivar-specific parameters for the studied cultivars. During the project we faced several challenges, it was very difficult to use a terrestrial laser scanner in China. Due to data policy restriction, we could not use precise GPS equipment. The latter was also a problem for the UAV and fieldspectroradiometer data collection. We could not set up a proper proximal and remote sensing groundtruthing. However, thanks to the support of the Chinese project partners, it was a very productive and successful cooperation project.

Projektbezogene Publikationen (Auswahl)

  • (2013): Precise plant height monitoring and biomass estimation with Terrestrial Laser Scanning in paddy rice, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-5/W2, 295-300
    Tilly, N., Hoffmeister, D., Cao, Q., Lenz-Wiedemann, V., Miao, Y., and Bareth, G.
    (Siehe online unter https://doi.org/10.5194/isprsannals-II-5-W2-295-2013)
  • (2013): Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS Journal, Vol. 78, pp.102-115
    Yu, K., Li, F., Gnyp, M.L., Miao, Y., Bareth, G., and Chen, X.
    (Siehe online unter https://doi.org/10.1016/j.isprsjprs.2013.01.008)
  • (2013): Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. Intern. J. Appl. Earth Oserv. Geoinf., Vol. 21, pp. 568-576
    Koppe, W., Gnyp, M.L., Hütt, C., Yao, Y., Miao, Y., Chen, X., and Bareth, G.
    (Siehe online unter https://doi.org/10.1016/j.jag.2012.07.016)
  • (2014): Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Research, Vol.155, pp. 42-55
    Gnyp, M.L., Miao, Y., Yuan, F., Ustin, S.L., Yu, K., Yao, Y., Huang, S. and Bareth, G.
    (Siehe online unter https://doi.org/10.1016/j.fcr.2013.09.023)
  • (2014): In-season estimation of rice nitrogen status with an active crop canopy sensor. Journal of Selected Topics in Applied Earth Observation and Remote Sensing
    Yao, Y., Miao, Y., Cao, Q., Wang, H., Gnyp, M.L., Bareth, G., Khoshla, R., Yang, W. and Liu, C.
    (Siehe online unter https://doi.org/10.1109/JSTARS.2014.2322659)
  • (2014): Multi-temporal Crop Surface Models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. J. Applied Remote Sensing 8(1), 083671
    Tilly, N., Hoffmeister, D., Cao, Q., Huang, S., Miao, Y., Lenz-Wiedemann, V., Bareth, G.
    (Siehe online unter https://doi.org/10.1117/1.JRS.8.083671)
  • (2015): Georeferencing Multi-source Geospatial Data Using Multi-temporal TerraSAR-X Imagery: a Case Study in Qixing Farm, Northeast China. PFG 2/2015, 173–185
    Zhao, Q., Hütt, C., Lenz-Wiedemann, V.I.S., Miao, Y., Yuan, F., Zhang, F., and Bareth, G.
    (Siehe online unter https://doi.org/10.1127/pfg/2015/0262)
  • (2015): Investigating within-field variability of rice from high resolution satellite imagery in Qixing Farm County, Northeast China. ISPRS International Journal of Geo-Information 4(1), 236-261
    Zhao, Q., Lenz-Wiedemann, V.I.S., Yuan, F., Jiang, R., Miao, Y., Zhang, F., and Bareth, G.
    (Siehe online unter https://doi.org/10.3390/ijgi4010236)
  • (2015): Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China. Remote Sensing 7(8), pp. 10646-10667
    Huang, S., Miao, Y., Zhao, G., Yuan, F., Ma, X., Tan, C., Yu, W., Gnyp, M.L., Lenz- Wiedemann, V.I.S, Rascher, U., and Bareth, G.
    (Siehe online unter https://doi.org/10.3390/rs70810646)
  • (2015): Transferability of Models for Estimating Paddy Rice Biomass from Spatial Plant Height Data. Agriculture 5(3), pp. 538-560
    Tilly, N., Hoffmeister, D., Cao, Q., Lenz-Wiedemann, V., Miao, Y. and Bareth, G.
    (Siehe online unter https://doi.org/10.3390/agriculture5030538)
  • (2016): Non-destructive monitoring of rice by hyperspectral in-field spectrometry and UAV-based remote sensing: Case study of field-grown rice in North Rhine-Westphalia, Germany. In:Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B1, 1071-1077
    Willkomm, M., Bolten, A., and Bareth, G.
    (Siehe online unter https://doi.org/10.5194/isprs-archives-XLI-B1-1071-2016)
  • (2017): Detecting spatial variability of paddy rice yield by combining the DNDC model with high resolution satellite images. Agricultural Systems, Vol. 152, pp. 47-57
    Zhao, Q., Brocks, S., Lenz-Wiedemann, V., Miao, Y., Thang, F., and Bareth, G.
    (Siehe online unter https://doi.org/10.1016/j.agsy.2016.11.011)
  • (2017): Potential of RapidEye and WorldView-2 Satellite Data for Improving Rice Nitrogen Status Monitoring at Different Growth Stages. Remote Sensing, Vol. 9(3): 227
    Huang, S., Miao, Y., Yuan, F., Gnyp, M.L., Yao, Y., Cao, Q., Wang, H., Lenz- Wiedemann, V., and Bareth, G.
    (Siehe online unter https://doi.org/10.3390/rs9030227)
  • (2018): A new critical nitrogen dilution curve for rice nitrogen status diagnosis in Northeast China. Pedosphere 28 (5): 814-822
    Huang, S., Miao, Y., Cao, Q., Yao, Y., Zhao, G., Yu, W., Shen, J., Yu, K., Bareth, G.
    (Siehe online unter https://doi.org/10.1016/S1002-0160(17)60392-8)
  • (2019): In-Season Diagnosis of Rice Nitrogen Status Using Proximal Fluorescence Canopy Sensor at Different Growth Stages. Remote Sensing 11(16), 1847
    Huang, S., Miao, Y., Yuan, F., Cao, Q., Ye, H., Lenz-Wiedemann, V.I.S., Bareth, G.
    (Siehe online unter https://doi.org/10.3390/rs11161847)
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung