Detailseite
Projekt Druckansicht

Erreichen von chemischer Genauigkeit in der Festkörperelektronenstrukturtheorie: Linear-skalierende periodische lokale Coupled-Cluster-Methode im Zusammenspiel mit explizit korrelierter Møller-Plesset-Störungstheorie

Fachliche Zuordnung Theoretische Chemie: Elektronenstruktur, Dynamik, Simulation
Förderung Förderung von 2010 bis 2022
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 179161791
 
Erstellungsjahr 2022

Zusammenfassung der Projektergebnisse

The goal of the project was to create a toolbox of methods that allowing for chemical accuracy calculations for non-conducting weakly correlated solids. The approach was based on hybrid scheme implying a low-level treatment plus a high-level correction. This goal has been achieved. At the present stage, for the low level one can use periodic LMP2 (based on PAOs or OSVs), periodic LMP2-F12 or embedded-fragment LdrCCD. The high-level correction can be evaluated using embedded-fragment CCSD(T) or finite-cluster LCCSD(T). In addition to the initial goals of the project, we have developed and implemented a new very accurate pair approximation for molecular local CCSD(T) method and embedded-fragment excited-state and multireference techniques. The implemented methods have been used in numerous applications. In the course of the project we have encountered difficulties with efficiency of the fully periodic coupled cluster treatment due to the expansion of the summation ranges in composite terms. A drastic compression of the virtual space by, e.g. using pair natural orbitals (PNOs), may significantly improve the efficiency, and we plan to explore this possibility. At the same time, an embedded-fragment approach appeared to be an effective alternative to the purely periodic treatment. The developments and results of this project are also seen as a basis for several follow up projects: • Several application projects are planned in collaboration with other groups. • A few technical improvements of current methodology are planned: (i) the periodic F12 treatment will be extended to OSVs, (ii) the embedded-fragment local treatment will be extended to LCCSD(T) level. • As noted above, the long range coupled cluster terms will be implemented in the periodic local PNO format and coupled to the embedded-fragment treatment. This will be instrumental for systems where very long-range contributions beyond MP2 are sizable. • Several new development avenues will be explored, such as (i) embedded-fragment local excited-state methods to study excited states localized on defects, (ii) embedded-fragment local multireference methods to local strongly correlated features in solids.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung