Project Details
Projekt Print View

SFB 805:  Control of Uncertainties in Load Carrying Systems in Mechanical Engineering

Subject Area Mechanical and Industrial Engineering
Mathematics
Social and Behavioural Sciences
Term from 2009 to 2020
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 57157498
 
Final Report Year 2021

Final Report Abstract

Technical systems satisfy human needs – at best sustainably and safely: If two systems A and B fulfil the same function, then the system achieving the same function with (i) less effort, (ii) greater availability and (iii) greater acceptability is preferable. Thus, all three quality dimensions are mentioned. Effort includes the cost of materials, energy, installation space and thereby all costs of a technical system including social costs. Acceptability is achieved, for example, through legal conformity and by maximising functional quality, i.e. by minimising the deviation of the actual function from the target function. Safety and sustainability are the two most important criteria in the design, manufacture and operation of technical systems in an environment characterised by uncertainty. Taguchi's Robust Design, which was developed in the middle of the last century and is widely validated and used today, is a set of methods for maximising the functional quality of a product. The Sonderforschungsbereich 805 "Mastering Uncertainty in Load-bearing Mechanical Engineering Systems", funded by the Deutsche Forschungsgemeinschaft from 2009 to 2021, further developed Taguchi's ideas: as with Robust Design, all phases of the product life cycle are analysed in order to on the one hand, control the propagation of uncertainty downstream from production to use. On the other hand, this analysis allows for an upstream learning process from the feedback of product use. By considering not only functional quality but all quality dimensions, Robust Design evolves to Sustainable Systems Design, which follows the paradigm "maximise quality subject to functionality". The methods, technologies and strategies for controlling uncertainty in function, acceptability and boundary conditions form the methodological core of the SFB. Through the cooperation of mathematicians, engineers, lawyers and linguists at the Technische Universität Darmstadt, the research goal could be comprehensively achieved. This applies in three respects: First, a consistent conceptualisation of uncertainty was achieved, encompassing data, model and structural uncertainty on the one hand and stochastic uncertainty, uncertainty and ignorance on the other. Structural uncertainty, which is identified as important in Taguchi's systems design of product development according to Pahl and Beitz (cf. also VDI 2221) but is not actually treated, is highlighted. The SFB 805 closes this gap, which is essential for the optimal design and usage of structures. Second, the SFB has developed methods to detect and quantify data and model uncertainty. Third, and certainly most importantly, the SFB has further developed and validated the strategies and associated methods and technologies for robustness, flexibility and resilience, and has classified them and made them calculable and predictable through proven metrics. This is especially true for resilience, which is on everyone's lips today. The scientific tradition of Galileo begins where things are quantifiable and comprehensible. The SFB, with its distinction between static and dynamic resilience and with its proven metrics as the k resilience, had a significant impact on pathing the way for substantial resilience research. In addition to many technologies, methods, patent applications and three spin-offs, the SFB team is particularly proud of three demonstrator systems, namely the 3D servo press, the sensor-active and modular MAFDS load-bearing system, and a completely new active chassis technology. All of the SFB's methods were successfully validated on these demonstrators and show their usefulness as well as their applicability for many technical systems.

Publications

  • (2008): Schwingungsfluiddämpfung- und/oder -federung (DE102008007566B4)
    Peter Pelz, Jens Rösner
  • (2010): Increased total flexibility by 3D Servo Presses. In: CIRP Annals, 59. (2010), Nr. 1, S. 267–270
    Groche, P.; Scheitza, M.; Kraft, M.; Schmitt, S.
    (See online at https://doi.org/10.1016/j.cirp.2010.03.013)
  • (2011): Smart structures assembly through incremental forming. In: CIRP Annals, 60. (2011), Nr. 1, S. 21–24
    Groche, P.; Türk, M.
    (See online at https://doi.org/10.1016/j.cirp.2011.03.003)
  • (2012): Luftfeder mit beweglichen Kolbensegmenten und Rollbalg (DE112012000804A5)
    Thomas Bedarf, Peter Pelz, Joachim Thurner
  • (2013): Sensorisches Verbindungselement und Herstellverfahren (WO002013139464A1)
    Matthias Brenneis, Peter Groche
  • (2014): Joining by forming—A review on joint mechanisms, applications and future trends. In: Journal of Materials Processing Technology, 214. (2014), Nr. 10, S. 1972–1994
    Groche, P.; Wohletz, S.; Brenneis, M.; Pabst, C.; Resch, F.
    (See online at https://doi.org/10.1016/j.jmatprotec.2013.12.022)
  • (2014): Optimal global rates of convergence for noiseless regression estimation problems with adaptively chosen design. In: Journal of Multivariate Analysis, 132. (2014), S. 197–208
    Kohler, M.
    (See online at https://doi.org/10.1016/j.jmva.2014.08.008)
  • (2014): Validated biomechanical model for efficiency and speed of rowing. In: Journal of biomechanics, 47. (2014), Nr. 13, S. 3415–3422
    Pelz, P. F.; Vergé, A.
    (See online at https://doi.org/10.1016/j.jbiomech.2014.06.037)
  • (2015): A model for improving the applicability of design methodologies to mechanical engineering design routines. In: Journal of Engineering Design, 26. (2015), 10-12, S. 302–320
    Schmitt, S. O.; Scheitza, M.; Groche, P.
    (See online at https://doi.org/10.1080/09544828.2015.1048198)
  • (2015): Adaptive density estimation from data with small measurement errors. In: IEEE Transactions on Information Theory, 61. (2015), Nr. 6, S. 3446–3456
    Felber, T.; Kohler, M.; Krzyzak, A.
    (See online at https://doi.org/10.1109/TIT.2015.2421297)
  • (2016): Active buckling control of a beam-column with circular cross-section using piezo-elastic supports and integral LQR control. In: Smart Materials and Structures, 25. (2016), Nr. 6, S. 65008
    Schäffner, M.; Götz, B.; Platz, R.
    (See online at https://doi.org/10.1088/0964-1726/25/6/065008)
  • (2016): Approach for the Visualization of Geometric Uncertainty of Assemblies in CAD-Systems. In: Journal of Computers, 11. (2016), Nr. 3, S. 247–257
    Heimrich, F.; Anderl, R.
    (See online at https://doi.org/10.17706/jcp.11.3.247-257)
  • (2016): Evaluation of uncertainty in experimental active buckling control of a slender beam-column with disturbance forces using Weibull analysis. In: Mechanical Systems and Signal Processing, 79. (2016), S. 123–131
    Enss, G. C.; Platz, R.
    (See online at https://doi.org/10.1016/j.ymssp.2016.02.066)
  • (2016): Examination and Optimization of a Heating Circuit for Energy-Efficient Buildings. In: Energy Technology, 4. (2016), Nr. 1, S. 136–144
    Pöttgen, P.; Ederer, T.; Altherr, L.; Lorenz, U.; Pelz, P. F.
    (See online at https://doi.org/10.1002/ente.201500252)
  • (2016): Lateral vibration attenuation of a beam with circular cross-section by a support with integrated piezoelectric transducers shunted to negative capacitances. In: Smart Materials and Structures, 25. (2016), Nr. 9, S. 95045
    Götz, B.; Schaeffner, M.; Platz, R.; Melz, T.
    (See online at https://doi.org/10.1088/0964-1726/25/9/095045)
  • (2016): Nonparametric quantile estimation based on surrogate models. In: IEEE Transactions on Information Theory, 62. (2016), Nr. 10, S. 5727–5739
    Enss, G. C.; Kohler, M.; Krzyzak, A.; Platz, R.
    (See online at https://doi.org/10.1109/TIT.2016.2586080)
  • (2016): Product Compliance: Neue Anforderungen an sichere Produkte. In: Zeitschrift für Energie- und Technikrecht, 2. (2016), S. 62–70
    Wendt, J.; Oberländer, M.
  • (2017): Efficient production of sensory machine elements by a two-stage rotary swaging process—Relevant phenomena and numerical modelling. In: Journal of Materials Processing Technology, 242. (2017), S. 205–217
    Groche, P.; Krech, M.
    (See online at https://doi.org/10.1016/j.jmatprotec.2016.11.034)
  • (2017): Model Order Reduction Techniques with a Posteriori Error Control for Nonlinear Robust Optimization Governed by Partial Differential Equations. In: SIAM Journal on Scientific Computing, 39. (2017), Nr. 5, S112-S139
    Lass, O.; Ulbrich, S.
    (See online at https://doi.org/10.1137/16M108269X)
  • (2017): Modeling of process forces with consideration of tool wear for machining of sintered steel alloy for application to valve seat in a combustion engine. In: Production Engineering, 11. (2017), 4-5, S. 477–485
    Bölling, C.; Kuhne, M.; Abele, E.
    (See online at https://doi.org/10.1007/s11740-017-0759-y)
  • (2017): Multiobjective PDE-constrained optimization using the reduced-basis method. In: Advances in Computational Mathematics, 43. (2017), Nr. 5, S. 945–972
    Iapichino, L.; Ulbrich, S.; Volkwein, S.
    (See online at https://doi.org/10.1007/s10444-016-9512-x)
  • (2017): Stiffness of multipoint servo presses: Mechanics vs. control. In: CIRP Annals, 66. (2017), Nr. 1, S. 373–376
    Groche, P.; Hoppe, F.; Sinz, J.
    (See online at https://doi.org/10.1016/j.cirp.2017.04.053)
  • (2018): A framework for solving mixed-integer semidefinite programs. In: Optimization Methods and Software, 33. (2018), Nr. 3, S. 594–632
    Gally, T.; Pfetsch, M. E.; Ulbrich, S.
    (See online at https://doi.org/10.1080/10556788.2017.1322081)
  • (2018): Aktive Luftfederung – Modellierung, Regelung und Hardware-in-the-Loop-Experimente. In: Forschung im Ingenieurwesen, 82. (2018), Nr. 3, S. 171–185
    Lenz, E.; Hedrich, P.; Pelz, P. F.
    (See online at https://doi.org/10.1007/s10010-018-0272-2)
  • (2018): Controlling the sensor properties of smart structures produced by metal forming. In: Journal of Materials Processing Technology, 262. (2018), S. 541–550
    Krech, M.; Trunk, A.; Groche, P.
    (See online at https://doi.org/10.1016/j.jmatprotec.2018.07.014)
  • (2018): Effect of static axial loads on the lateral vibration attenuation of a beam with piezo-elastic supports. In: Smart Materials and Structures, 27. (2018), Nr. 3, S. 35011
    Götz, B.; Platz, R.; Melz, T.
    (See online at https://doi.org/10.1088/1361-665X/aaa937)
  • (2018): Experimentelle Untersuchung des menschlichen Einflusses auf die Unsicherheit in der Mensch-Technik-Interaktion. In: Zeitschrift für Arbeitswissenschaft, 72. (2018), Nr. 1, S. 44–55
    Oberle, M.; Helfert, M.; König, C.; Bruder, R.
    (See online at https://doi.org/10.1007/s41449-017-0071-x)
  • (2018): Gain-scheduled ℋ∞  buckling control of a circular beam-column subject to time-varying axial loads. In: Smart Materials and Structures, 27. (2018), Nr. 6, S. 65009
    Schäffner, M.; Platz, R.
    (See online at https://doi.org/10.1088/1361-665X/aab63a)
  • (2018): Maschinelles Design eines optimalen Getriebes. In: ATZ - Automobiltechnische Zeitschrift, 120. (2018), Nr. 10, S. 72–77
    Altherr, L. C.; Ederer, T.; Pfetsch, M. E.; Pelz, P. F.
    (See online at https://doi.org/10.1007/s35148-018-0131-3)
  • (2018): Minimizing of Kinetosis during Autonomous Driving. In: ATZ worldwide, 120. (2018), 7-8, S. 68–75
    Hedrich, P.; Lenz, E.; Pelz, P. F.
    (See online at https://doi.org/10.1007/s38311-018-0081-0)
  • (2019): A certified model reduction approach for robust parameter optimization with PDE constraints. In: Advances in Computational Mathematics, 45. (2019), Nr. 3, S. 1221–1250
    Alla, A.; Hinze, M.; Kolvenbach, P.; Lass, O.; Ulbrich, S.
    (See online at https://doi.org/10.1007/s10444-018-9653-1)
  • (2019): Resilient layout, design and operation of energy-efficient water distribution networks for high-rise buildings using MINLP. In: Optimization and Engineering, 20. (2019), Nr. 2, S. 605–645
    Altherr, L. C.; Leise, P.; Pfetsch, M. E.; Schmitt, A.
    (See online at https://doi.org/10.1007/s11081-019-09423-8)
  • (2019): Two control strategies for semi-active load path redistribution in a load-bearing structure. In: Mechanical Systems and Signal Processing, 118. (2019), S. 195–208
    Gehb, C. M.; Platz, R.; Melz, T.
    (See online at https://doi.org/10.1016/j.ymssp.2018.08.044)
  • (2019): Uncertainty quantification in the mathematical modelling of a suspension strut using Bayesian inference. In: Mechanical Systems and Signal Processing, 118. (2019), S. 158–170
    Mallapur, S.; Platz, R.
    (See online at https://doi.org/10.1016/j.ymssp.2018.08.046)
  • (2020): Efficient validation of novel machine elements for capital goods. In: CIRP Annals, 69. (2020), Nr. 1, S. 125–128
    Groche, P.; Sinz, J.; Germann, T.
    (See online at https://doi.org/10.1016/j.cirp.2020.03.004)
  • (2020): Enabling the digital twin: a review of the modelling of measurement uncertainty on data transfer standards and its relationship with data from tests. In: International Journal of Product Lifecycle Management, 12. (2020), Nr. 3, S. 250
    Ríos, J.; Weber, M.; Anderl, R.; Staudter, G.
    (See online at https://doi.org/10.1504/IJPLM.2020.10032154)
  • (2020): Measuring the bore straightness during reaming with sensoric tools. In: Production Engineering, 14. (2020), Nr. 4, S. 535–544
    Bretz, A.; Abele, E.; Weigold, M.
    (See online at https://doi.org/10.1007/s11740-020-00977-6)
  • (2020): Optimization and validation of pumping system design and operation for water supply in high-rise buildings. In: Optimization and Engineering (2020)
    Müller, T. M.; Leise, P.; Lorenz, I.-S.; Altherr, L. C.; Pelz, P. F.
    (See online at https://doi.org/10.1007/s11081-020-09553-4)
  • (2021): Die Weiterentwicklung der Produkthaftungsrichtlinie. In: Zeitschrift zum Innovations- und Technikrecht, 9. (2021), Nr. 1
    Joggerst, L.; Wendt, J.
  • (2021): Mastering Uncertainty in Mechanical Engineering. 1. Aufl., Springer International Publishing
    Pelz, P. F.; Groche, P.; Pfetsch, M.; Schäffner, M.
    (See online at https://doi.org/10.1007/978-3-030-78354-9)
  • (2021): Measuring and modelling of process forces during tapping using single tooth analogy process. In: Production Engineering, 15. (2021), Nr. 1, S. 97–107
    Geßner, F.; Weigold, M.; Abele, E.
    (See online at https://doi.org/10.1007/s11740-020-01004-4)
  • (2021): Sustainable aircraft design — A review on optimization methods for electric propulsion with derived optimal number of propulsors. In: Progress in Aerospace Sciences (2021)
    Pelz, P. F.; Leise, P.; Meck, M.
    (See online at https://doi.org/10.1016/j.paerosci.2021.100714)
  • (2021): Uncertainty in Mechanical Engineering. Proceedings of the 4th International Conference on Uncertainty in Mechanical Engineering (ICUME 2021), June 7–8, 2021. Cham : Springer International Publishing
    Pelz, P. F.; Groche, P.
    (See online at https://doi.org/10.1007/978-3-030-77256-7)
 
 

Additional Information

Textvergrößerung und Kontrastanpassung