Project Details
Projekt Print View

Numerical mathematics, approximation to nonlocal operators and integral equations, analysis of high-dimensional data, quantum chemistry

Subject Area Mathematics
Term from 2005 to 2008
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 5455261
 
Eine der größte Herausforderungen für numerische Rechenmethoden sind heutzutage hochdimensionale Probleme, wie sie z.B. bei Vielteilchenwechselwirkungen, Integral- bzw. Differentialgleichungen in [0,1]d (d ¿ 3) und dem damit verbundenen Operatorkalkül auftreten. Viele Standardmethoden versagen bei derartigen Aufgabenstellungen, da der Rechenaufwand exponentiell mit der physikalischen Dimension ansteigt. Ein möglicher Ausweg aus diesem Dilemma sind Methoden, die auf tensorproduktartigen Zerlegungen basieren.Neuere effiziente numerische Methoden wie hierarchische Matrizen bzw. Multipolmethoden und Wavelet-Matrixkompression basieren alle auf einer Separation der Variablen. Diese Strategie wird bei der Kronecker-Tensorproduktnäherung aufgegriffen und systematisch weiterentwickelt. Es ist das Ziel des hier vorgestellten Projekts, diesen Ansatz mit hierarchischen Matrizen und Wavelets zu kombinieren, um ein praktikables Operatorkalkül für hochdimensionale Probleme zu erhalten. Die aus diesem Projekt resultierenden Methoden sollen im Bereich der Elektronenstrukturberechnung angewandt werden und dort Rechnungen mit linearer Komplexität ermöglichen.
DFG Programme Research Grants
 
 

Additional Information

Textvergrößerung und Kontrastanpassung