Project Details
Projekt Print View

Mechanisms of polyamine-dependent control of ornithine decarboxylase and its antizyme

Subject Area Cell Biology
Term from 2005 to 2014
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 5451277
 
Final Report Year 2015

Final Report Abstract

Polyamines are organic cations with essential functions in all organisms e.g. by balancing negative charges of nucleic acids. They are especially important in dividing cells, which is why rapidly replicating cancer cells have a particularly high demand of polyamines. The homodimeric ornithine decarboxylase (ODC), which converts ornithine into the diamine putrescine, is a rate-limiting enzyme in the biosynthesis of polyamines. ODC levels are controlled by a conserved homeostatic feedback control system involving an ODC binding protein called antizyme. After our identification of the ODC antizyme (OAZ1) gene in bakers' yeast, we have analyzed the mechanisms, by which polyamines concentrations influence the levels of ODC. We have discovered three processes in which polyamines act to down-regulate ODC. First, polyamines promote synthesis of Oaz1 protein at the level of OAZ1 mRNA translation. We identified a novel mechanism, in which polyamines bind to nascent Oaz1 polypeptide thereby preventing stalling of ribosomes on the OAZ1 mRNA and thus promote completion of Oaz1 synthesis. Secondly, we found that polyamines inhibit ubiquitin-dependent degradation of Oaz1. We have identified and characterized the ubiquitylation enzymes that target Oaz1 for degradation and found this process to be controlled in synchrony with the cell division cycle. Thirdly, we discovered that polyamines promote targeting of ODC by Oaz1 beyond their effects on Oaz1 synthesis or stability. We could show that polyamines directly promote Oaz1-mediated degradation of ODC at the level of the proteasome both in vivo and in vitro. We found that recognition of the ODC by the proteasome involves its N-terminal unstructured domain, which is essential for degradation and sufficient for proteolytic targeting of reporter proteins. Other data suggest that Oaz1, beyond enhancing exposure of the ODC N-terminal domain, moreover promotes ODC degradation by contributing an additional proteasome binding site. In summary, the findings of this project established the ODC antizyme polypeptide as an intracellular sensor of polyamine concentrations with a critical function in the homeostatic feedback regulation of polyamine biosynthesis.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung