Project Details
Projekt Print View

Statistische Verfahren unter strukturellen Annahmen wie Monotonie oder Konkavität an Dichte- und Regressionsfunktionen

Subject Area Mathematics
Term from 2004 to 2006
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 5440737
 
Regressionsmodelle in der mathematischen Statistik beschreiben einen funktionalen Zusammenhang zwischen einer Einflussgröße X und einer reellen Zielgröße y, welcher durch eine Funktion m beschreiben werden kann. Außer von der Einflussgröße hängt die Zielgröße in der Regel noch von anderen, nichtbeobachtbaren Größen ab, die durch einen additiven zufälligen Fehler modelliert werden. In vielen Anwendungen können bis auf strukturelle Annahmen an die Regressionsfunktion m (wie z.B. Monotonie und Glattheit) keine weiteren Annahmen über die Form der Regressionsfunktion getroffen werden. In dem beantragten Forschungsprojekt sollen neue statistische Hypothesentests entwickelt werden, mit denen bei vorliegenden Daten solche strukturellen Annahmen (etwa Monotonie der Funktion m) validiert werden können. Wenn die Gültigkeit der Annahmen bestätigt wurde, kann man auf die speziellen strukturellen Voraussetzungen abgestimmte Verfahren zur weiteren Analyse der Daten, etwa zur Schätzung der Funktion m einsetzen. Aus diesem Grund sollen außerdem neue Schätzverfahren in nichtparametrischen Regressionsmodellen mit zusätzlichen strukturellen Annahmen entwickelt werden. Neben dem erwähnten Regressionsfall sollen auch Methoden für die Schätzung oder das Testen einer Dichte bzw. Hazardratenfunktion unter strukturellen Annahmen (etwa Monotonie oder Konkavität) entwickelt werden.
DFG Programme Research Fellowships
International Connection Australia
Cooperation Partner Professor Dr. Peter Hall
 
 

Additional Information

Textvergrößerung und Kontrastanpassung