Project Details
Projekt Print View

Directed evolution to understand enzyme function of almost protein independent bacterial RNase P RNA versus largely protein-dependent archaeal RNase P RNA

Subject Area Biochemistry
Term from 2004 to 2011
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 5429323
 
Ribonuclease P (RNase P) catalyzes tRNA 5'-end maturation in all organisms and organelles. The RNA subunit (P RNA) of RNase P from Bacteria is an active catalyst in vitro in the absence of the protein cofactor. P RNAs from eucaryotes, organelles and most Archaea have entirely lost this capacity during evolution, and all rational attempts to re-engineer RNA-alone catalysis have failed. Thus, to understand the structural and conformational requirements for P ribozyme function, approaches of directed evolution are needed. To realize such an evolutionary strategy, we plan: (a) sequence randomization and mutagenesis of selected genes encoding P RNAs which have almost or completely lost their RNA-alone activity during evolution, to generate large pools of molecules with sequence and structure variation; (b) in vitro selection of variants with P ribozyme activity and (c) in vivo selection of variants that can functionally replace the native P RNA in bacterial complementation strains. We expect answers to the following questions: (1) Can we retro-evolve ribozyme activity? (2) What are the requirements for specific P RNA ribozyme function in terms of conformational flexibility and stability? (3) Which structural changes are required to convert a non-bacterial P RNA to a bacterial-like P RNA ribozyme? (4) How extensive is sequence variation among the group of functional RNA variants selected in vitro and in vivo? (5) Does a gain of function of mutagenized RNA variants in the bacterial host mimic natural evolution? Will these RNAs be efficient ribozymes in vitro?
DFG Programme Priority Programmes
 
 

Additional Information

Textvergrößerung und Kontrastanpassung