Structural and functional relationships of plant cryptochromes
Final Report Abstract
Cryptochromes together with DNA photolyases constitute a large protein family of flavoproteins that are present in all kingdoms of life. Whereas DNA photolyases repair the major UV-B lesions in DNA, cryptochromes function as UV-A/blue light photoreceptors and have normally no photolyase activity. However, there are some exceptions to this rule with family members having a dual role in repair and signaling. Moreover, there is evidence that cryptochromes could function as magnetoreceptors which depend on photoexcitation. Our focus within this research unit was on a detailed understanding of how such closely related proteins as photolyase and cryptochrome fulfill very different biological functions, namely electron-mediated catalysis using fully reduced and light-excited FADH-* or light signaling from the lid state that contains semireduced FAD. These studies were mostly done in an interdisciplinary approach on members of the cryptochrome/photolyase family from Arabidopsis thaliana and resulted in a multitude of published structural, spectroscopic and functional data.
Publications
- (2005) Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana. Acta Crys. F61, 935-938
Pokorny R., Klar T., Essen L.-O., Batschauer A.
(See online at https://doi.org/10.1107/S1744309105028897) - (2006) Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana. J. Photochem. Photobiol. B: Biol. 85, 1-6
Song S.-H., Dick B., Penzkofer A., Pokorny R., Batschauer A., Essen L.-O.
(See online at https://doi.org/10.1016/j.jphotobiol.2006.03.007) - (2006) Blue-light induced changes in cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry 45, 2472-2479
Kottke T., Batschauer A., Ahmad, M., Heberle J.
(See online at https://doi.org/10.1021/bi051964b) - (2006) Natural and non-natural chromophores in the DNA photolyase from Thermus thermophilus. ChemBioChem. 7, 1798-1806
Klar T., Kaiser G., Hennecke U., Carell T., Batschauer A., Essen L.-O.
(See online at https://doi.org/10.1002/cbic.200600206) - (2007) Cryptochrome 3 from Arabidopsis thaliana: Structural and functional analysis of its complex with a folate light antenna. J. Mol. Biol. 366, 954-964
Klar T., Pokorny R., Moldt J., Batschauer A., Essen L.-O.
(See online at https://doi.org/10.1016/j.jmb.2006.11.066) - (2007) Cryptochrome blue-light photoreceptors are activated through interconversion of flavin redox states. J. Biol. Chem. 282, 9383-9391
Bouly J.-P., Schleicher E., Dionisio-Sese M., Vandenbussche F., van der Straeten D., Bakrim N., Meier S., Batschauer A., Galland P., Bittl R., Ahmad M.
(See online at https://doi.org/10.1074/jbc.M609842200) - (2007) The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J. Biol. Chem. 282, 14916-14922
Banerjee R., Schleicher E., Meier S., Muñoz Viana R., Pokorny, R., Ahmad M., Bittl R., Batschauer A.
(See online at https://doi.org/10.1074/jbc.M700616200) - (2008) Recognition and repair of UV-lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc. Natl. Acad. Sci. USA 105, 21023-21027
Pokorny R., Klar T., Hennecke U., Carell T., Batschauer A., Essen L.-O.
(See online at https://doi.org/10.1073/pnas.0805830106) - (2009) A cryptochrome-like protein is involved in the regulation of photosynthesis genes in Rhodobacter sphaeroides. Mol. Microbiol. 74, 990-1003
Hendrischk A.-K., Frühwirt S.W., Moldt J., Pokorny R., Metz S., Kaiser G., Jäger A., Batschauer A., Klug G.
(See online at https://doi.org/10.1111/j.1365-2958.2009.06912.x) - (2009) Fluorescence Behaviour of 5,10- Methenyltetrahydrofolate, 10-Formyltetrahydrofolate, 10-Formyldihydrofolate, and 10-Formylfolate in Aqueous Solution at pH 8 Chem. Phys. 361, 75-82
Tyagi A., Penzkofer A., Batschauer A., Wolf E.
(See online at https://doi.org/10.1016/j.chemphys.2009.05.008) - (2009) Photorededuction of the folate cofactor in members of the photolyase family. J. Biol. Chem. 284, 21670-21683
Moldt J., Pokorny R., Orth C., Linne U., Geisselbrecht Y., Marahiel M.A., Essen L.-O., Batschauer A.
(See online at https://doi.org/10.1074/jbc.M109.018697) - (2009) Thermal degradation of (6R,S)-5,10- methenyltetrahydrofolate in aequeos solution at pH 8. Chem. Phys. 358, 132-136
Tyagi A., Penzkofer A., Batschauer A., Wolf E.
(See online at https://doi.org/10.1016/j.chemphys.2009.01.005) - (2009). Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana. J. Photochem. Photobiol. B: Biol. 97, 94-108
Zirak P., Penzkofer A., Moldt J., Pokorny R., Batschauer A., Essen, L.-O.
(See online at https://doi.org/10.1016/j.jphotobiol.2009.08.005) - (2010) A gain-of-function mutation of Arabidopsis CRYPTOCHROME 1 promotes flowering. Plant Physiol.
Exner V., Alexandre C., Rosenfeldt G., Alfarano P., Nater M., Calfisch A., Gruissem W., Batschauer A., Hennig L.
(See online at https://doi.org/10.1104/pp.110.160895) - (2010) Light-induced activation of class II cyclobutane pyrimidine dimer photolyases. DNA Repair, 9, 495-505
Okafuji A., Biskup T., Hitomi K., Getzoff E.D., Kaiser G., Batschauer A., Bacher A., Hidema J., Teranishi M., Yamamoto K., Schleicher E., Weber S.
(See online at https://doi.org/10.1016/j.dnarep.2010.01.014) - (2010) The electronic state of flavoproteins: Investigations with proton electronnuclear double resonance. Appl. Magn. Reson. 37, 339-352
Schleicher E., Wenzel R., Ahmad M., Batschauer A., Essen L.-O., Hitomi K., Getzoff E.D., Bittl R., Weber S.
(See online at https://doi.org/10.1007/s00723-009-0101-8)