Detailseite
Maschinelles Lernen zur Verbesserung unseres Verständnisses von Land-Atmosphärischen Prozessen und Prozessrückkopplungen
Antragsteller
Professor Dr. Martin Butz; Professor Dr. Volker Wulfmeyer
Fachliche Zuordnung
Physik und Chemie der Atmosphäre
Förderung
Förderung seit 2024
Projektkennung
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 514721519
Deep Learning (DL) hat sich auch in den Erdsystemwissenschaften in den letzten Jahren rasant entwickelt. Allerdings ist die genaue Art, wie DL Systeme Probleme lösen kaum zugänglich (eine black box). In diesem Projekt werden wir DL und andere Ansätze des maschinellen Lernens entwickeln, um sowohl Land-Atmosphärische (L-A) Rückkopplungsprozesse besser zu verstehen als auch um quantitative Relationen herzuleiten, die aktuelle Ansätze wie die Monin-Obukhov similarity theory (MOST) übertreffen. Die interdisziplinäre Kollaboration in diesem Konsortium und die Daten, die zusammengetragen werden, wird den Erfolg dieses Projektes sicherstellen. Wie werden Daten-getriebene aber wohl-strukturierte DL und andere Ansätze des maschinellen Lernens verfolgen. Wir wollen (1) Satelliten Daten nutzen um die Landoberflächentemperatur und die Feuchtigkeit der Vegetationsschicht zu bestimmen; (2) Möglichkeiten untersuchen, die Energiebalance herzustellen; (3) Abhängigkeiten der Oberflächenflüsse vom Terrain bis hin zum Entrainment untersuchen und identifizieren, um aktuelle Ansätze wie MOST und Bulk-Richardson-Zahl zu verbessern; (4) ein erstes Foundation-Modell entwickeln, um den Phasenraum zu analysieren und multiple L-A Relationen generieren zu können. Wir werden dabei vier Hauptansätze des maschinellen Lernens nutzen: (A) DL Methoden, die darauf optimiert sind, mit Hilfe von redundanten Daten die räumliche Auflösung einer Datengröße zu erhöhen; (B) die Parametrisierung von Physik-basierten Gleichungen und deren Approximation; (C) die Integration von physik-informierten Induktiven Biases in DL, um das Lernen und die Generalisierung zu verbessern; (D) selbst-informiertes und konrastierendes DL zur Entwicklung eines L-A Foundation Modells. Alle Techniken werden die inhärent limitierte Vorhersagbarkeit der Prozesse berücksichtigen. Um unser Verständnis der L-A Kopplungsprozesse zu verbessern, werden wir DL und andere Ansätze des Maschinellen Lernens schachteln und Relevanzanalysen durchführen. Dadurch werden wir fundamentale, teilweise neue Zusammenhänge, Prozessgleichungskomponenten, Prozessparametrisierungen und notwendige Berechnungsschritte ergründen – insbesondere solche, die für die Generierung von akkuraten und allgemein gültigen Relationen zwischen atmosphärischen Variablen notwendig sind. In Kollaboration mit P2 werden wir das Vorhersagepotential von Satellitendaten erforschen. Zusammen mit P1, P3, P5, und P6 werden wir Oberflächen- und Entrainmentflussrelationen ableiten, Komponenten der Energiebalance herleiten, und Evapotranspiration aufspalten. Unser Projekt führt CCWG-DL. Es wird Hilfestellungen und Workshops anbieten, um andere Daten effektiv mit Verfahren des maschinellen Lernens analysieren zu können und weitere Relationen aufdecken zu können – wie zum Beispiel Einflüsse der Landoberflächenstruktur (P5) und die Bestimmung der Blending Height (P1). Beiträge zu O1, O2, O3, O4 und OS sind zu erwarten.
DFG-Verfahren
Forschungsgruppen
Teilprojekt zu
FOR 5639:
Land-Atmosphäre Feedback Initiative (LAFI)