Detailseite
Projekt Druckansicht

Vorhersage von Schüttungen alpiner Karstquellen im Hinblick auf den Klimawandel unter Verwendung neuer Deep Learning-Methoden

Fachliche Zuordnung Hydrogeologie, Hydrologie, Limnologie, Siedlungswasserwirtschaft, Wasserchemie, Integrierte Wasserressourcen-Bewirtschaftung
Förderung Förderung seit 2023
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 529209885
 
Karstgrundwasserleiter spielen im Alpenraum eine wichtige Rolle. Sie bedecken etwa 56% der Fläche, und ein erheblicher Teil der Bevölkerung ist ganz oder teilweise von Trinkwasser aus Karstquellen abhängig, die oft mit wertvollen Ökosystemen verbunden sind und zur Wasserkrafterzeugung beitragen. Die Alpen zählen nach Studien zu den am stärksten vom Klimawandel betroffenen Gebieten in Europa. Als Folge der steigenden Temperaturen werden sich die gespeicherten Mengen an Schnee und Eis stark verringern, was zu einer Verschiebung zwischen Wasserhaushaltskomponenten in Verbindung mit einer saisonalen Umverteilung der Niederschläge führt. Außerdem wird erwartet, dass Hoch- und Niedrigwasserereignisse häufiger auftreten werden. Der Stand der Technik bei der Modellierung der Schüttung von Karstquellen, meist mittels konventioneller numerischer Modelle, ist auf standortspezifische, oft aufwändige und nicht übertragbare wissenschaftliche Studien beschränkt, die manuelle Modellabstimmung und Kalibrierung erfordern. Bis heute gibt es keinen leicht übertragbaren Ansatz, der gleichzeitig auf viele Karstquelleinzugsgebiete anwendbar ist. In diesem Projekt werden wir einen modernen, Deep-Learning basierten Ansatz zur Modellierung der Schüttung von Karstquellen entwickeln, der sich besonders gut eignet, übertragbare Modelle, die Informationen von verschiedenen Standorten nutzen können, aufzubauen. Deep Learning ist ein Teilgebiet des maschinellen Lernens, basierend auf künstlichen neuronalen Netzen, das sich sowohl bei akademischen als auch bei industriellen Anwendungen als sehr erfolgreich erwiesen hat. Die vorgeschlagene Studienregion sind die Alpen, mit Karstgebieten in Österreich, der Schweiz, Deutschland, Frankreich, Italien und Slowenien, mit einem Schwerpunkt auf dem besonders vom Klimawandel betroffenen von der Alpenkonvention abgegrenzten Gebirgsgebiet. Als Grundlage der Studie dient das World Karst Spring Database (WoKaS). Es wird im Laufe des Projekts mit zusätzlichen Daten von Behörden und Wasserversorgern ergänzt, insbesondere in Regionen mit bislang schlechter Abdeckung. Die Arbeiten beinhalten die Erstellung eines umfassenden Datensatzes mit Einzugsgebietsattributen und meteorologischen Einflussgrößen für etwa 150 Quellen. Klassische Lumped-Parameter-Modelle werden als Benchmarks aufgesetzt und mit den neu entwickelten Deep-Learning basierten Modellergebnissen verglichen. Ziel ist es, die Eignung neuartiger Deep-Learning Modellansätze für die Abschätzung der Auswirkungen des Klimawandels für eine Vielzahl von kurz- und langfristigen Vorhersagen zu untersuchen. Eine vertiefende Fallstudie des Dachsteingebietes, dessen große Karstregion wesentlich zur Wasserversorgung und Wasserkrafterzeugung beiträgt, wird die vergleichende Untersuchung mit einem numerischen 3D-Modell erweitern. Schließlich werden die entwickelten Modelle dazu verwendet, um Auswirkungen des Klimawandels auf die alpinen Karstgrundwasserressourcen vorherzusagen.
DFG-Verfahren Sachbeihilfen
Internationaler Bezug Österreich
 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung