Project Details
Outer-vascular mechanics as an age-dependent regulator of sprouting angiogenesis and vessel patterning (P10)
Subject Area
Medical Informatics and Medical Bioinformatics
Term
since 2021
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 427826188
Checa and Petersen will investigate in a combined in vitro and in silico approach how outer-vascular mechanics as an age-dependent regulator of sprouting steers angiogenesis and vessel patterning. They will explore how stromal cells that surround nascent vessels guide sprout formation and vascular patterning through their own structural organisation, through the mechanical communication with vessel-resident endothelial cells and through the secretion of extracellular matrix. Checa and Petersen hypothesise that outervascular cells actively contribute to sprout formation by mechanical tension deposited in the cell‐extracellular matrix (ECM) network surrounding the vascular structures. As aging compromises the intrinsic capacity of stromal cells to sense, convert and respond to mechanical signals, this mechanical support of sprout formation is expected to be age-dependent. The ultimate goal is to understand how the alignment, tensional state and remodelling of extracellular matrix fibres modulate the process of angiogenic sprouting with relevance for bone defect healing.
DFG Programme
Collaborative Research Centres
Applicant Institution
shared FU Berlin and HU Berlin through:
Charité - Universitätsmedizin Berlin
Charité - Universitätsmedizin Berlin
Project Heads
Professorin Dr. Sara Checa; Professor Dr. Ansgar Petersen