Project Details
Projekt Print View

Graphene quantum dots and nanoribbons for advanced optics

Subject Area Organic Molecular Chemistry - Synthesis and Characterisation
Term from 2019 to 2024
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 431450789
 
The project will focus on the development of the chemical synthesis of graphene quantum dots (GQDs) and graphene nanoribbons (GNRs) and their detailed optical characterizations for the next-generation of nano- and quantum optical applications. The properties of the obtained nanographenes will be investigated through experiments at the single object level. To this end, the consortium gathers two groups of chemists and one group of physicists. The main goal will be to synthesize new GQDs and GNRs structures with original electronic and optical properties and to make the link between these properties and their structure. The main challenges of the field are to push the gap of the nanographene towards the near infrared and to be able to add them new functionalities. To address these challenges, we propose to synthesize GQDs with original shapes and to use porphyrins as building blocks to synthesize new GQD and GNRs. The fabrication of these GQDs and GNRs will be achieved through close collaborations between the German and French chemistry groups. Finally, the nanographenes will be studied by advanced optical experiments. In particular spectroscopy experiments at the single molecule level and as a function of temperature will be used to analyze the quantum states at the origin of the light emission and to relate them to the structure of the object. Likewise, tools of quantum optics such as intensity correlation measurements or optically detected magnetic resonance experiments will be used to investigate the spin physics, as for instance the intersystem crossing between singlet and triplet states. At longer term, the GRANAO project intends to address “on demand” fabrication of well-adapted nanographene materials for particular applications, such as optoelectronics, photonics, and (bio)labelling in bulk scales, as well as a wide range of cutting-edge applications, including quantum emitters for cryptography, telecommunication, and quantum sensing.
DFG Programme Research Grants
International Connection France
 
 

Additional Information

Textvergrößerung und Kontrastanpassung