Project Details
Dynamische Stabilitätsraten für Networked Control Systems
Applicant
Professor Dr. Stefan Siegmund
Subject Area
Automation, Mechatronics, Control Systems, Intelligent Technical Systems, Robotics
Term
from 2007 to 2011
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 43045120
Final Report Year
2012
Final Report Abstract
Im Rahmen des Projekts wurden Aspekte der Networked Control Systems entwickelt. Anwendungen finden sich perspektivisch im Bereich der digitalen Steuerung über drahtlose Netzwerke.
Publications
-
Lyapunov's second method for nonautonomous differential equations. Discrete Contin. Dyn. Syst. 18 (2007), 375-403
P. Kloeden, L. Grüne, S. Siegmund, F. Wirth
-
Slow integral manifolds for Lagrangian fluid dynamics in unsteady geophysical flows. Physica D 233 (2007), 73 - 82
J. Duan, C. Pötzsche, S. Siegmund
-
A computational ergodic theorem for infinite iterated funciion systems. Stoch. Dyn. 8 (2008), 365 - 381
N.D. Cong, L.H. Due, S. Siegmund
-
Uniformly attracting solutions of nonautonomous differential equations. Nonlinear Analysis 68 (2008), 3789 - 3811
A. Berger, S. Siegmund
-
A definition of spectrum for differential equations on finite time. J. Differential Equations 246 (2009), 1098-1118
A. Berger, T.S. Doan, S. Siegmund
-
Exponential stability of linear time-invariant systems on time scales. Nonlinear Dyn. Syst. Theory 9 (2009), 37 - 50
T.S. Doan, A. Kalauch, S. Siegmund
-
An improved maximum allowable transfer interval for Lp-stability of networked control systems. IEEE Transactions on Automatic Control 55 (2010), 179 - 184
A. Jentzen, F. Leber, D. Schneisgen, A. Berger, S. Siegmund
-
Stability radii for positive linear time-invariant systems on time scales. Systems & Control Letters 59 (2010), 173 - 179
T.S. Doan, A. Kalauch, S. Siegmund, F. Wirth
-
Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure and Applied Analysis 10 No. 3 (2011), 917 - 936
N. Koksch, S. Siegmund
-
Transient spectral theory, stable and unstable cones and Gershgorin's theorem for finite-time differential equations. J. Differential Equations 250 (2011), 4177-4199
T.S. Doan, K. Palmer, S. Siegmund
-
A unified approach to finite-time hyperbolicity which extends finite-time Lyapunov exponents. J. Differential Equations 252 (2012), 5535-5554
T.S. Doan, D. Karrasch, T.Y. Ngyuen, S. Siegmund
-
Integral manifolds of nonautonomous boundary Cauchy problems. J. Nonl. Evol. Equ. Appl. 1 (2012), 1 - 15
T.S. Doan, M. Moussi, S. Siegmund