Project Details
Amenability, structure and regularity of group actions on C*-algebras
Applicant
Eusebio Gardella, Ph.D.
Subject Area
Mathematics
Term
from 2018 to 2022
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 418366465
Final Report Abstract
No abstract available
Publications
- Compact group actions with the Rokhlin property, Trans. Amer. Math. Soc. 371 (2019), no. 4, 2837–2874
E. Gardella
(See online at https://doi.org/10.1090/tran/7523) - Actions of nonamenable groups on Z-stable C*-algebras. Adv. Math. 389 (2021), 107931
E. Gardella, M. Lupini
(See online at https://doi.org/10.48550/arXiv.1803.06308) - Decomposable partial actions. J. Funct. Anal. 281 (2021), no. 7, 109112
F. Abadie, E. Gardella, S. Geffen
(See online at https://doi.org/10.1016/j.jfa.2021.109112) - Equivariant KK-theory and the continuous Rokhlin property. IMRN. (2021)
E. Gardella
(See online at https://doi.org/10.1093/imrn/rnaa292) - Partial C*-dynamics and Rokhlin dimension. Ergodic Theory Dynam. Syst. (2021)
F. Abadie, E. Gardella, S. Geffen
(See online at https://doi.org/10.1017/etds.2021.82) - Rokhlin dimension: duality, tracial properties, and crossed products. Ergodic Theory Dynam. Syst. 41 (2021), no. 2, 408–460
E. Gardella, I. Hirshberg, L. Santiago
(See online at https://doi.org/10.1017/etds.2019.68) - Strongly outer actions of amenable groups on Z-stable nuclear C*-algebras. J. Math. Pures Appl. (2022)
E. Gardella, I. Hirshberg, and A. Vaccaro
(See online at https://doi.org/10.1016/j.matpur.2022.04.003)