Project Details
Projekt Print View

Assessment of parallel movement plans by probing spatial attention

Subject Area General, Cognitive and Mathematical Psychology
Term from 2019 to 2024
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 417940167
 
Our environment constantly presents us with multiple opportunities and demands for action. At any given moment, we must select one of all possible actions, and specify the corresponding movement metrics. Evidence suggests that the brain simultaneously prepares multiple actions in parallel, and action selection results from continuous competition embedded in bottom-up driven sensorimotor processing that is biased by top-down decision-relevant information.However, there is ongoing debate about which aspects of actions are actually represented in parallel. Reaching trajectories of human participants usually reflect an average between the direct trajectories to several currently relevant targets; this aspect of motor behavior has been interpreted as indicating that the executed movement results from averaging of individual movement plans. This interpretation, thus, assumes that all aspects of the different actions are represented in parallel. However, averaging behavior appears to sometimes depend on strategic considerations. For instance, trajectory averaging is abandoned when targets are far apart, or when movements have to executed be very fast; this strategic behavior change improves participants’ overall performance. The use of such strategies has been taken to indicate that movement trajectories are not, by default, averaged. Instead, only a single detailed movement plan would be computed, and this single plan could be derived as an average when this is strategically advantageous. Thus, this theoretical stance assumes parallel representation of final movement goals, but not of movement plans that specify aspects such as the movement’s trajectory.The central challenge to solving this debate is to find convincing measures that indicate whether several movement plans (as opposed to just goals) are currently active. We propose here a series of experiments that address this challenge. To this end, we employ the well-established relationship between movement goals and attentional deployment. Attention is shifted towards one or several sequential motor goals already prior to movement initiation, expressed in enhanced perceptual discrimination performance at target as compared to irrelevant locations. We extend this experimental approach to probing the parallel representation of multiple motor goals for hand reaches. Critically, we probe the attentional deployment to trajectory-defining locations, such as regions near obstacles, along potentially relevant movement trajectories. As a second approach, we induce multiple potentially relevant trajectories through a motor adaptation paradigm. Finally, we address top-down aspects to motor plan selection to elucidate how such aspects affect the averaging of bottom-up sensory information. Together, the proposed experiments will provide substantive and cogent evidence about which levels of movement planning underlie parallel representation.
DFG Programme Research Grants
International Connection Austria
 
 

Additional Information

Textvergrößerung und Kontrastanpassung