Project Details
Coherent energy transfer in a self-assembled plasmonic lattice
Subject Area
Physical Chemistry of Solids and Surfaces, Material Characterisation
Physical Chemistry of Molecules, Liquids and Interfaces, Biophysical Chemistry
Physical Chemistry of Molecules, Liquids and Interfaces, Biophysical Chemistry
Term
from 2018 to 2023
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 404818834
In certain molecular aggregates, electronic excitations are coherently spread over the whole aggregate, as the individual transition dipole moments interact by dipole-dipole coupling. As this dipole-dipole coupling is a near-field effect, the interaction is limited to a small spatial region, and the participating quantum emitters cannot be addressed individually. We propose building a larger-scale analogue of a molecular aggregate to study coherent energy transfer. We will couple a small ensemble of quantum emitters with a spatially extended hybrid plasmonic lattice mode. The plasmonic features ensure localized hot spots with strong light-matter interaction, while the Bragg grating ensures a spatial size that allows optical addressing of the individual hot spots. Directed self-assembly of metallic nanoparticles with flat faces in regular arrays is necessary to obtain structures of high optical quality. However, directed self-assembly of these particles is challenging due to their dominant adhesion force, which tend to fix particles in place immediately upon contact with the target structure. Therefore, a precise surface modifications and controlled deposition of nanoparticles will be of critical importance during assembly of the plasmonic cavity lattice. Spatially resolved spectroscopy at the diffraction limit will allow us to map the wave function of the electronic excitation and its quantum correlations. In the end, the structure will act as a quantum simulator of the underlying molecular aggregate.
DFG Programme
Research Grants
Cooperation Partners
Professor Dr. Josef Breu; Professor Dr. Andreas Fery