Project Details
Projekt Print View

Optimization of electrocatalysts for fuel cell applications without alloying: a joint theoretical and experimental study

Subject Area Physical Chemistry of Solids and Surfaces, Material Characterisation
Experimental Condensed Matter Physics
Term from 2017 to 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 355784621
 
Final Report Year 2021

Final Report Abstract

The project aim was to use recent experimental discoveries and a fundamental understanding of how one can increase the surface activity of pure Pt by at least the factor of 3.5-5 without any alloying to design active and more stable electrocatalysts for the oxygen reduction reaction. The key fact in this approach is that it is possible to increase the activity of, e.g., Pt by controlling the atom coordination near the ORR active sites. The particular aim was to elucidate and implement optimized structures with the maximum density of active sites of right coordination, improved stability, and local mass transport properties. Successful realization of the proposed project would not only clearly demonstrate the researchers and engineers how to improve the existing materials even without alloying; it would likely establish an entirely new methodology for the development of heterogeneous electrocatalysts based on a combination of theoretical calculations of different levels and experimental approaches which elaborate open nanostructured materials applicable in the “real-world” electrocatalysis.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung