Project Details
Quantum dot micro-cavity solid-state quantum light sources
Applicant
Professor Dr. Christian Schneider
Subject Area
Experimental Condensed Matter Physics
Optics, Quantum Optics and Physics of Atoms, Molecules and Plasmas
Optics, Quantum Optics and Physics of Atoms, Molecules and Plasmas
Term
from 2017 to 2022
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 338972874
Final Report Year
2022
Final Report Abstract
The project addressed two of the most central problems in the implementation of solid-state non-classical light sources: The implementation of bright single photon sources with a welldefined polarization, and the implementation of entangled photon pair sources of high extraction efficiency. Utilizing advanced photonic designs, specifically developed device technologies, and state-ofthe-art spectroscopy, within the project, we could push the boundaries in the field, yielding notable results which were published, in part, in ‘high impact’ journals such as Physical Review Letters.
Publications
-
Near-unity indistinguishability single photon source for large-scale integrated quantum optics. Physical review letters 122, no. 17 (2019): 173602
Ł. Dusanowski, S.-H. Kwon, C. Schneider, and S. Höfling
-
Polarization dependent light-matter coupling and highly indistinguishable resonance fluorescence photons from quantum dot-micropillar cavities with elliptical cross-section. Phys. Rev. B 100, 115305 (2019)
S. Gerhardt, M. Deppisch, S. Betzold, T. H. Harder, T. C. H. Liew, A. Predojević, S. Höfling, and C. Schneider
-
"Strain spectrally-tunable single-photon source based on a quantum dot in microcavity (Conference Presentation)." Physics and Simulation of Optoelectronic Devices XXVIII. Vol. 11274. SPIE, 2020
Moczala-Dusanowska, M. , et al.
-
"Strain tuning of the properties of quantum dots microcavity systems." 11th International Conference on Quantum Dots. 2020
Moczała-Dusanowska, M. , et al.
-
(2020). Generation of entangled photon pairs from quantum dots in selfaligned broadband cavities. In Quantum Technology International Conference 2020
Gines, L., Pepe, C., Gonzales, J., Gregersen, N., Höfling, S., Schneider, C., & Predojevic, A.
-
Opto-mechanical tuning of the polarization properties of micropillar cavity systems with embedded quantum dots. Phys. Rev. B 101, 245308 (2020)
S. Gerhardt, M. Moczała-Dusanowska, Ł. Dusanowski, T. Huber, S. Betzold, J. Martín-Sánchez, R. Trotta, A. Predojević, S. Höfling, and C. Schneider
-
"Entanglement generation in semiconductor nanostructures." 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021
Ginés, Laia, et al.
-
"Modification of emission rate in broadband deterministic micropillar cavities." In CLEO: Applications and Technology, pp. JTh3A-18. Optical Society of America, 2021
Ginés, Laia, Magdalena Moczała-Dusanowska, Radim Hošák, Miroslav Ježek, Sven Höfling, Christian Schneider, and Ana Predojevic
-
Time-bin entangled photon pairs from quantum dots embedded in a self-aligned cavity. Optics Express 29, 4174 (2021)
L. Ginés, C. Pepe, J. Gonzales, N. Gregersen, S. Höfling, C. Schneider, and A. Predojević
-
A broadband micropillar cavity device for high extraction efficiency of photon pairs. Quantum 2.0 Conference and Exhibition Technical Digest Series (Optica Publishing Group, 2022), paper QTh4B.6
L. Ginés, M. Moczała-Dusanowska, D. Dlaka, R. Hošák, J. R. Gonzales-Ureta, Jaewon Lee, M. Ježek, E. Harbord, R. Oulton, S. Höfling, A. B. Young, C. Schneider, and A. Predojević
-
All-Optical Tuning of Indistinguishable Single Photons Generated in Three-Level Quantum Systems. Nano Letters 22, 3562 (2022)
Ł. Dusanowski, C. Gustin, S. Hughes, C. Schneider, and S. Höfling
-
High extraction efficiency source of photon pairs based on a quantum dot embedded in a broadband micropillar cavity. Phys. Rev. Lett. 129, 033601 (2022)
L. Ginés, M. Moczała-Dusanowska, D. Dlaka, R. Hošák, J. R. Gonzales-Ureta, Jaewon Lee, M. Ježek, E. Harbord, R. Oulton, S. Höfling, A. B. Young, C. Schneider, and A. Predojević