Project Details
Projekt Print View

Dynamic analysis of prosthetic structures with polymorphic uncertainty

Subject Area Mechanics
Term from 2016 to 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 312916115
 
People with joint disorders or lower limb loss require a technical substitute that restores biomechanical function and body integrity. Prothetic structures not only need to fulfil their respective functional requirements (allowing a save and wide range of motion at low energy expenditure and without impairing the person's body) but also the appearance of the resulting motion (including aesthetic properties like natural and symmetric gait patterns) is of high relevance. Since measurement of in vivo joint motion and loading is complicated and the experimental testing of newly developed prostheses under real life conditions is very difficult (in particular for experiments concerning human movements with prostheses, there are hardly appropriate probands available), predictive simulation plays a major role. Biomechanical motion can be simulated as solution of an optimal control problem, with a physiologically motivated objective function. However, polymorphic sources of uncertainty are present resulting from the prostheses itself, the way a patient moves or the environment. The overarching goal of this project (phases I and II) is the development of models and structure preserving solution methods for biomechanical optimal control problems involving uncertainty to enable the reliable prediction of human motion with prostheses and their analysis.
DFG Programme Priority Programmes
 
 

Additional Information

Textvergrößerung und Kontrastanpassung