Project Details
Projekt Print View

Line bundles on noncommutative algebraic and arithmetic surfaces

Applicant Dr. Fabian Reede
Subject Area Mathematics
Term from 2015 to 2016
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 272768204
 
Final Report Year 2016

Final Report Abstract

Geradenbündel auf nichtkommutativen algebraischen und arithmetischen Flächen werden studiert. Hierbei ist eine nichtkommutative algebraische beziehungsweise arithmetische Fläche ein Paar (X, A), wobei X ein zweidimensionales Schema über C oder der Ring ganzer Größen OK in einem Zahlkörper K ist und A eine Garbe von Algebren, die generisch ein zentraler Schiefkörper über dem Funktionenkorper von X ist. Ein Geradenbündel E auf solch einer nichtkommutative Fläche ist eine Garbe auf X, auf der A operiert, so dass E generisch ein Modul vom Rang eins über dem von A induzierten Schiefkörper ist. Ist das Basisschema der Körper C, so besitzen diese Geradenbündel einen Modulraum. Es wurde bewiesen, dass dieser Modulraum eine irreduzible symplektische Varietät ist, wenn X eine K3-Fläche und A eine Azumaya-Algebra ist. Weiter wurde bewiesen, dass diese irreduzible symplektische Varietät deformationsäquivalent zu einem Hilbert-Schemata von Punkten auf der Fläche X ist. Er liefert also keine neue Deformationsklasse. Über dem Basisschema C wurde auch die Deformationstheorie der Geradenbündel, für den Fall das die Algebra eine sogenannte del Pezzo-Ordnung ist, untersucht. Ist solch ein Bündel E ’nur’ torsionsfrei, so wurde gezeigt, dass es eine Deformation F von E gibt, die lokal projektiv ist, also ein echtes Geradenbündel auf der nichtkommutative Fläche darstellt. Hierzu wurde eine Familie von A-Geradenbündeln über einer zusammenhängenden Kurve C konstruiert, so dass E und F Mitglieder dieser Familie sind. Diese Familie liefert eine zusammenhängende Kurve im Modulraum MA/p2, die die Isomorphieklassen von E und F im Modulraum verbindet. Dieses Resultat zeigt, dass die lokal projektiven A-Geradenbündel eine dichte Teilmenge des Modulraumes bilden. Ist das Basisschema der Ring ganzer Großen OK für einen Zahlkorper K, so wurden Azumaya-Algebren und Moduln darüber in der Arakelov Geometrie betrachtet. Man gibt hierbei dem Spektrum von OK auch noch die reellen Bewertungen hinzu. Über jeder reellen Bewertung denke man sich in X die induzierte Riemannsche Fläche angeheftet. Garben auf X induzieren Vektorbuündel auf diesen Riemannschen Flächen, welche man mit hermiteschen Metriken ausstattet. Es wurden in diesem Projekt für hermitesche Azumaya-Algebren und hermitesche Azumaya Moduln angepasste arithmetische A-Chernklassen definiert. Anschließend wurden einige dieser neuen Klassen als auch gewöhnliche arithmetische Chernklassen explizit berechnet. Zum Beispiel wurde allgemein die erste arithmetische Chernklasse einer hermiteschen Azumaya-Algebra berechnet. Mit Hilfe dieser Chernklassen konnte dann eine einfache geschlossene Darstellung für die erste arithmetische Chernklasse der Deligne Paarung für hermitesche Azumaya Moduln hergeleitet werden, die die bekannte Formel für gewöhnliche hermitesche Geradenbündeln auf X verallgemeinert.

Publications

  • The symplectic structure on the moduli space of line bundles on a noncommutative Azumaya surface. Preprint, 2015
    Fabian Reede
  • Hermitian Azumaya modules and arithmetic Chern classes. Preprint, 2016
    Fabian Reede
  • Torsion-free rank one sheaves over del Pezzo orders. Preprint, 2016
    Norbert Hoffmann and Fabian Reede
 
 

Additional Information

Textvergrößerung und Kontrastanpassung