Project Details
Projekt Print View

Molecular interplay in eukaryotic nucleotide excision repair

Subject Area Biochemistry
Term from 2015 to 2021
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 269187088
 
Final Report Year 2021

Final Report Abstract

This project has enabled us to foster our knowledge on the intricate interaction network of the TFIIH complex, with a special focus on XPD helicase regulation. This was of particular importance since switching XPD activity on and off is vital for the different tasks of TFIIH during NER and transcription initiation. We could show that XPD’s activity is dominated by inhibition of MAT1 in the context of TFIIH via shielding of residues that are functionally important for helicase activity located in the Arch domain of XPD. This was an unexpected observation and redefined the functionality of XPD’s Arch domain. The importance of the Arch domain was further emphasized when our analysis revealed that it interacts with XPG and in addition might contribute to the stabilization of complexes during the incision process. We also showed that the interaction between the TFIIH subunits p34 and p44 is vital for TFIIH function and identified a previously undetected p34/p44 interface that is mediated by the C4 domain of p34. The project allowed us to gain significant insights into the damage verification process of which XPD is an integral part. We were able to demonstrate that XPD employs a different lesion recognition strategy as compared to the prokaryotic protein UvrB. In contrast to UvrB, XPD is able to recognize damages on both DNA strands. This observation requires further investigation and needs be put into the context of the complete TFIIH and NER machinery and to investigate whether our results on the importance of the Arch domain could influence this behavior. In the context of damage verification we could further identify the TFIIH subunits p44 and p62 as major XPD regulators that also modulate XPD’s behavior towards damaged DNA. This finding went along with the identification of the highly unexpected, damaged DNA binding properties of the p44/p62 subcomplex. Overall, our data significantly enhanced the knowledge on XPD regulation within the TFIIH complex. Our results have major implications for the damage verification strategies that are employed by TFIIH during eukaryotic NER and have provided a basis for further experiments to elucidate how damage verification via XPD is regulated and achieved.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung