Project Details
Projekt Print View

Understanding and characterizing land surface-atmosphere exchange and feedbacks

Subject Area Hydrogeology, Hydrology, Limnology, Urban Water Management, Water Chemistry, Integrated Water Resources Management
Term from 2014 to 2019
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 182331427
 
This project uses three different and complementary approaches to quantify local to regional evapotranspiratlon and surface energy balance partitioning. The first approach uses the seml-physlcal-, Penman-Montelth equation combined with the complementary relationshipand thermal remote sensing to derive high resolution estimates of evapotranspiratlon. The second approach uses hydna-meteorological simulations of the WRF-NOAH-MP model system down to scales of 100 m to study the effects of soll-vegetatlon-atmosphere feedbacksand mesoscale circulations on regional evapotranspiratlon with unprecedented detail. The third approach uses the thermodynamic limit on convectlve exchange to Infer the magnitude of soll-vegetation-atmosphere Interactions, atmospheric mixing processes, and local to regional evapotranspiratlon patterns. A dedicated field campaign performing micrometeorologlcal measurements of the surface energy balance and the CAOS field observations will be used to evaluate these methods. The WRF-NOAH-MP model Is also applied for quantitative precipitation forecasting by assimilating polarization radar data to Improve Initial water budget components. These approaches are evaluated In a joint synthesis activity regarding surface energy balance estimates from local to catchment scale and their closure assumptions. The synthesis of these three approaches of vastly different complexity has the potential to substantially advance our ability to understand and nDbustly predict regional evapotranspiratlon and the surface energy balance.
DFG Programme Research Units
International Connection Austria, Luxembourg
Co-Investigator Dr. Martin Schlerf
 
 

Additional Information

Textvergrößerung und Kontrastanpassung