Project Details
Projekt Print View

Subtypes of Retinal Müller Glial Cells as Adaptations to Specialized Vision

Subject Area Molecular Biology and Physiology of Neurons and Glial Cells
Term from 2014 to 2018
Project identifier Deutsche Forschungsgemeinschaft (DFG) - Project number 255011267
 
Final Report Year 2018

Final Report Abstract

Research on glial cells in the last decades revealed a lot of general functions of these cells. However, much less is known about functional specialization and adaptation of subtypes of glial cells to the specific area of the nervous system where they are located. Müller cells are the dominating glial cells of the vertebrate retina. They display a great morphological variability between different species. It has been found that Müller cells express a number of ion and water channels as well as transport proteins in their cell membrane. We demonstrate that Müller cells from almost all investigated species from all vertebrate classes (fishes, amphibians, reptiles, birds, mammals) are characterized by a dominant inwardly rectifying K+ conductance which can be largely blocked by Ba2+ ions. Moreover, a number of channels and receptors have been observed in Müller cells, some of them occur in a species-specific manner. In addition to membrane channels, Müller cells express metabotropic receptors. Activation of metabotropic nucleotide P2Y receptors evokes intracellular Ca2+ increases or even Ca2+ waves. Such signaling processes can be induced by mechanical stimulation. We have demonstrated that Ca2+ signaling after mechanical stimulation in the avascular guinea pig retina shows differences to similar processes in the vascularized rat retina, which might be caused by the lack of gap junction-coupled astrocytes in avascular retinae. We observed that in elephants, which are precocial animals, Müller cells are almost mature in many of their properties even at birth. Müller cells show similarities to radial glial cells which may represent an archetype of macroglial cells. Radial glial cells from vertebrates and echinoderms express SCO-spondin (SCO = subcommissural organ). This protein was detected immunohistochemically in the nervous system of hemichordates and protostomes from different taxa. These data suggest that radial glial cells are a characteristic phenomenon in the nervous system of all bilaterian animals.

Publications

 
 

Additional Information

Textvergrößerung und Kontrastanpassung