Detailseite
Projekt Druckansicht

Genomevolution: Struktur-Funktion-Beziehungen in der polyploiden Kulturpflanze Brassica napus

Fachliche Zuordnung Pflanzenzüchtung, Pflanzenpathologie
Förderung Förderung von 2014 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 243242356
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

The genomes of plants have evolved through cycles of polyploidy (during which whole genome duplication occurs) and diploidisation (during which those duplicated genomes stabilise). This cycle represents a fundamental mechanism by which the genetic control of biological processes evolves and is a key driver of diversity and performance in many crop species. As a model for polyploid crop species we are studying Brassica napus, which includes northern Europe’s principal oil crop, oilseed rape. A wide range of accessions are available, of both B. napus formed in nature (an allotetraploid formed by spontaneous hybridization of B. rapa and B. oleracea species; the main source of genetic diversity for rapeseed breeding) and resynthesised B. napus (formed by induced hybridization of the same species in the laboratory), which has been observed to undergo rapid genome change. We hypothesise that the genome evolution observed in resynthesised B. napus represents an accelerated form of the genome evolution that is ongoing in cultivated B. napus derived in nature. We are testing this hypothesis by characterising molecular evolution on a genome-wide scale in a large panel of natural and resynthesised B. napus, including derived populations, relating the observed variation in genome structure to trait variation of relevance for rapeseed as a crop. During this project we have (1) Established a B. napus pan-transciptome, comprising ordered gene models representing the nascent B. napus genome. (2) Shown that homoeologous genome changes are present widely in B. napus formed in nature. (3) Quantified the frequency of copy number variation and homoeologous exchanges present in resynthesised B. napus, comparing it with the frequency observed in B. napus formed in nature. (4) Developed an understanding of how genome structural and functional evolution affects plant development and crop trait variation.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung