Detailseite
Projekt Druckansicht

Biological soil crust algae in the polar regions - biodiversity, genetic diversity and ecosystem resilience under global change scenarios

Fachliche Zuordnung Physik, Chemie und Biologie des Meeres
Förderung Förderung von 2013 bis 2019
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 237488018
 
Erstellungsjahr 2019

Zusammenfassung der Projektergebnisse

Terrestrial green algae and cyanobacteria are typical and abundant components of biological soil crusts in the polar regions. These communities form water-stable aggregates that have important ecological roles in primary production, nitrogen fixation, nutrient cycling, water retention and stabilization of soils. Although available data on green algae and cyanobacteria are generally very limited for the Arctic and Antarctica, their functional importance as ecosystem developers in nutrient poor environments is regarded as high. The main goal of our project was, for the first time, to conduct a precise evaluation of the biodiversity of eukaryotic green microalgae and cyanobacteria in biological soil crusts (BSCs) isolated from the Antarctic Peninsula and Arctic Svalbard. Vegetation surveys were performed at the research sites on Livingston Island (Antarctica) and Svalbard (Arctica). The most abundant taxa were identified using classical approaches, molecular identification techniques using newly established cultured strains, as well as new omics technics (such as metabarcoding and metatranscriptomics). The infra-specific genetic diversity of a range of selected (ecological key species) populations was determined in relation to their physiological plasticity. In addition, the project contributed to our understanding of the biogeography of cyanobacterial and algal communities within soil crusts, the spatial and seasonal role of cyanobacteria and algae within the soil crust community, and the dependence of the community composition on the availability of water. The resilience to water and temperature stress has also been studied using classical and metatranscriptomic approaches using common algal genera found in soil crust communities. A major finding of the latter studies was that cold acclimation improved water stress resilience in the ubiquitous alga "Klebsormidium". Overall, the project has led to 10 publications in international recognized journals.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung