Detailseite
Projekt Druckansicht

Torische und tropische Methoden in der Algebraischen Geometrie

Fachliche Zuordnung Mathematik
Förderung Förderung von 2012 bis 2017
Projektkennung Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 227923852
 
Erstellungsjahr 2018

Zusammenfassung der Projektergebnisse

Leitfaden des Projektes war es, neue torische und tropische Methoden im Rahmen der drei Teilprojekte „Mori dream spaces“, „Quotienten für algebraische Gruppenoperationen“ und „Fano-Varietäten“ zu entwickeln und zur Anwendung zu bringen. Im Teilprojekt „Mori dream spaces" haben wir uns mit konstruktiver globaler Singularitätenauflösung befasst. Das Ergebnis bildet die Basis für die kombinatorische Beschreibung verschiedener Singularitätentypen des Mori-Programmes für Fano-Varietaten mit Torusoperation der Komplexität Eins durch den neu eingeführten antikanonischen Komplex. Dies ermöglicht im Teilprojekt „Fano-Varietäten“ die Klassifikation aller Q-faktoriellen terminalen dreidimensionalen Fano-Varietäten mit einer effektiven Operation eines zweidimensionalen Torus in der Picardzahl Eins und, allgemeiner, im kombinatorisch minimalen Fall. Weiter erhalten wir in Teilprojekt „Fano-Varietäten“ vollständige Klassifikationen aller glatten Fanovarietäten X der Picardzahl höchstens zwei, falls X eine Torusoperation der Komplexität Eins besitzt oder einen Cox-Ring, der durch eine rein quadratische Gleichung definiert wird. Ergebnisse im Teilprojekt „Quotienten für algebraische Gruppenoperationen“ sind zum einen die Festtellung, dass der Modulraum M0,n für n = 10,11,12 kein Mori dream space ist und zum anderen die Konstruktion einer kanonischen Kompaktifizierung des Raumes aller Konfigurationen von n Punkten auf der projektiven Geraden modulo Translation.

Projektbezogene Publikationen (Auswahl)

 
 

Zusatzinformationen

Textvergrößerung und Kontrastanpassung