Project Details
Depletion of algal toxin-contaminated water using selective biofilters based on plant-produced antibodies (plantibodies)
Applicant
Professor Dr. Dietmar Knopp
Subject Area
Hydrogeology, Hydrology, Limnology, Urban Water Management, Water Chemistry, Integrated Water Resources Management
Term
from 2013 to 2017
Project identifier
Deutsche Forschungsgemeinschaft (DFG) - Project number 225858526
Although the use of genetically modified plants for bioremediation, or the in situ cleaning of contaminated sites, has been known for quite some time, little attention has so far been paid to the production of antibodies in plants and their ex vivo application in selective depletion. Therefore, highly affine and specific antibodies against algal toxins using microcystin as an example will be produced in plants at low cost within this research project. The basis is a monoclonal antibody (Mab 10E7, species: mouse) generated in a former research project. The sequence of the variable domains will be determined, optimised for plants and subcloned into suitable plant transformation vectors, which already contain constant antibody sequences. In addition, a scFv fragment containing different tag sequences and fusion proteins will be constructed. Leaf-based (tobacco) as well as seed-based (barley) systems will be used.Affinity-purified plant-produced antibodies (plantibodies) will be characterised in detail for their binding properties using microtitre plate-ELISA and surface plasmon resonance (SPR). The monoclonal mouse antibody will be used as reference. To assure cost-efficiency for future applications, roughly purified fractions (sequential pH and temperature treatment followed by filtration) will be tested for the upscaling. Following immobilisation of the plantibody fractions on suitable substrates, for instance membranes, porous polymer monoliths or in porous glasses, their application for depletion will be defined using model water samples spiked fortified with microcystins.
DFG Programme
Research Grants
International Connection
Austria
Participating Persons
Professor Dr. Reinhard Nießner; Professorin Dr. Eva Stöger